
The Industria Libraries Manual

Göran Weinholt

This manual is for the Industria libraries, a collection of R6RS Scheme libraries.

Copyright c© 2010, 2011, 2012, 2013, 2016, 2017, 2018, 2019, 2020 Göran Weinholt
goran@weinholt.se.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CON-
TRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CON-
NECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

mailto:goran@weinholt.se

i

Table of Contents

1 Getting started . 1
1.1 Installation . 1
1.2 Usage . 1

2 Library reference . 2
2.1 Cryptographic primitives . 2

2.1.1 Advanced Encryption Standard . 2
2.1.2 ARCFOUR stream cipher . 5
2.1.3 The Blowfish Cipher . 5
2.1.4 ChaCha20 stream cipher . 6
2.1.5 Elliptic Curve Diffie-Hellman key exchange 7
2.1.6 Edwards-curve Digital Signature Algorithm (EdDSA) 8
2.1.7 Data Encryption Standard . 8
2.1.8 Diffie-Hellman key exchange . 10
2.1.9 Digital Signature Algorithm . 11
2.1.10 Elliptic Curve Cryptography . 12
2.1.11 Elliptic Curve Digital Signature Algorithm (ECDSA) 14
2.1.12 Entropy and randomness . 16
2.1.13 RSA public key encryption and signatures 16

2.2 OpenPGP signature verification . 19
2.3 Off-the-Record Messaging . 21
2.4 Secure Shell (SSH) . 25

2.4.1 Secure Shell Connection Protocol . 29
2.4.2 Secure Shell Transport Layer Protocol . 39
2.4.3 Secure Shell Authentication Protocol . 42
2.4.4 SSH private key format conversion . 46
2.4.5 SSH public key format conversion . 47

2.5 Various utilities . 48
2.5.1 Base 64 encoding and decoding . 48
2.5.2 Bit-string data type . 49
2.5.3 Bytevector utilities . 50
2.5.4 Password hashing . 51
2.5.5 Basic TCP client connections . 52

3 Demo programs . 53
3.1 checksig – verifies OpenPGP signature files . 53
3.2 honingsburk – simple Secure Shell honey pot 53
3.3 secsh-client – manually operated Secure Shell client 53

Index . 55

1

1 Getting started

1.1 Installation

The simple version: install Akku from https://akkuscm.org/. Run akku install in the
your project directory. This fetches the Industria and its dependencies and install them to
.akku. Run .akku/env to start using Industria in your R6RS Scheme of choice.

The longer, more manual, version: extend your Scheme library search path to include the
industria directory, e.g. if you’re using Chez Scheme on a Unix system and you unpacked
Industria in ~/scheme:

export CHEZSCHEMELIBDIRS=$HOME/scheme

Other possible environment variables include IKARUS_LIBRARY_PATH, LARCENY_LIBPATH,
MOSH_LOADPATH and YPSILON_SITELIB. For more details please refer to your Scheme imple-
mentation’s documentation. An alternative is to move or symlink the industria directory
into a directory that already exists in your Scheme’s search path. Download the dependen-
cies noted in the Akku.lock file and install them in the library path.

Releases and the latest source code for Industria are available at GitHub https://

github.com/weinholt/industria/.

1.2 Usage

To load an R6RS library into your program or library, put it in the import specification.
Here’s Hello World for R6RS Scheme:

#!/usr/bin/env scheme-script

(import (rnrs))

(display "Hello World!\n")

The first line is useful on Unix systems, but it is specified in the R6RS Non-Normative
Appendices, so your Scheme might not accept programs with that line present.

See the programs/ and tests/ directories for examples.

https://akkuscm.org/
https://github.com/weinholt/industria/
https://github.com/weinholt/industria/

2

2 Library reference

2.1 Cryptographic primitives

Beware that if you’re using some of these libraries for sensitive data, let’s say passwords,
then there is probably no way to make sure a password is ever gone from memory. There is
no guarantee that the passwords will not be swapped out to disk or transmitted by radio.
There might be other problems as well. The algorithms themselves might be weak. Don’t
pick weak keys. Know what you’re doing.

Your Scheme’s implementation of (srfi :27 random-bits) might be too weak. It’s
common that it will be initialized from time alone, so an attacker can easily guess your
random-source internal state by trying a few timestamps and checking which one generates
the data you sent. These libraries try to use /dev/urandom if it exists, but if it doesn’t they
fall back on SRFI-27 and could reveal the secret of your heart to the enemy. See RFC4086
for details on how randomness works.

Please remember that these are low-level primitives. To be useful they must be part of
a protocol. And remember what the license says about warranties.

2.1.1 Advanced Encryption Standard

The (industria crypto aes) library provides an implementation of the symmetrical Rijn-
dael cipher as parameterized by the Advanced Encryption Standard (AES). It was created
by the Belgian cryptographers Joan Daemen and Vincent Rijmen. Key lengths of 128, 192
and 256 bits are supported.

The code uses clever lookup tables and is probably as fast as any R6RS implementation
of AES can be without using an FFI. The number of modes provided is pretty sparse though
(only ECB and CTR). It also leaks key material via memory.

AES modes have recommendations for how many times they should be used with the
same keying data.

[Procedure]expand-aes-key key
Expands the key into an AES key schedule suitable for aes-encrypt!. The key
must be a bytevector of length 16, 24 or 32 bytes. The type of the return value is
unspecified.

[Procedure]aes-encrypt! source source-start target target-start key-schedule
Takes the 16 bytes at source+source-start, encrypts them in Electronic Code Book
(ECB) mode using the given key-schedule, and then writes the result at target+target-
start. The source and the target can be the same.

(import (industria crypto aes))

(let ((buf (string->utf8 "A Scheme at work"))

(sched (expand-aes-key (string->utf8 "super-secret-key"))))

(aes-encrypt! buf 0 buf 0 sched)

buf)

⇒ #vu8(116 7 242 187 114 235 130 138 166 39 24 204 117 224 5 8)

It is generally not a good idea to use ECB mode alone.

Chapter 2: Library reference 3

[Procedure]reverse-aes-schedule key-schedule
Reverses the key-schedule to make it suitable for aes-decrypt!.

[Procedure]aes-decrypt! source source-start target target-start key-schedule
Performs the inverse of aes-encrypt!. The key-schedule should first be reversed with
reverse-aes-schedule.

(import (industria crypto aes))

(let ((buf (bytevector-copy #vu8(116 7 242 187 114 235 130 138

166 39 24 204 117 224 5 8)))

(sched (reverse-aes-schedule

(expand-aes-key

(string->utf8 "super-secret-key")))))

(aes-decrypt! buf 0 buf 0 sched)

(utf8->string buf))

⇒ "A Scheme at work"

[Procedure]clear-aes-schedule! key-schedule
Clears the AES key schedule so that it no longer contains cryptographic material.
Please note that there is no guarantee that the key material will actually be gone
from memory. It might remain in temporary numbers or other values.

[Procedure]aes-ctr! source source-start target target-start len key-schedule ctr
Encrypts or decrypts the len bytes at source+source-start using Counter (CTR) mode
and writes the result to target+target-start. The len does not need to be a block
multiple. The ctr argument is a non-negative integer.

This procedure is its own inverse and the key-schedule should not be reversed for
decryption.

Never encrypt more than once using the same key-schedule and ctr value. If you’re
not sure why that is a bad idea, you should read up on CTR mode.

[Procedure]aes-cbc-encrypt! source source-start target target-start k
key-schedule iv

Encrypts k bytes in the bytevector source starting at source-start with AES in CBC
mode and writes the result to target at target-start.

The argument k must be an integer multiple of 16, which is the block length.

The iv bytevector is an Initial Vector. It should be 16 bytes long, initialized to random
bytes. This procedure updates the iv after processing a block.

[Procedure]aes-cbc-decrypt! source source-start target target-start k
key-schedule iv

The inverse of aes-cbc-encrypt!.

[Procedure]make-aes-gcm-state key-schedule iv-length tag-length
Creates an AES GCM state object that is used by the procedures below. The key-
schedule argument is the key schedule created by expand-aes-key.

Chapter 2: Library reference 4

[Procedure]aes-gcm-encrypt! source source-start target target-start k
gcm-state iv aad tag tag-start

Encrypts k bytes in the bytevector source starting at source-start with AES in Ga-
lois/Counter Mode (GCM) mode and writes the result to target at target-start.
Source and target may overlap.

The argument k must be an exact integer. There is no block length for this mode.

The gcm-state argument must be an object created by make-aes-gcm-state.

The iv bytevector is an initial vector. It must never be reused with the same key.

GCM is different from CBC and CTR in that it offers Authenticated Encryption
with Associated Data (AEAD). This means that it does not need to be combined
with a separate HMAC procedure. The aad argument is a bytevector that contains
additional data to be authenticated (or signed). The authentication tag (or signature)
is written to the bytevector tag starting at length tag-start.

(import (rnrs)

(industria crypto aes))

(let* ((key #vu8(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16))

(iv-length 12)

(tag-length 16)

(gcm-state (make-aes-gcm-state (expand-aes-key key)

iv-length tag-length)))

(let* ((plaintext

(string->utf8 "This is our message to you"))

(ciphertext

(make-bytevector (bytevector-length plaintext)))

(iv (make-bytevector iv-length 0))

(aad (string->utf8 "aad"))

(tag (make-bytevector tag-length)))

(bytevector-u32-set! iv 0 42 (endianness big))

(aes-gcm-encrypt! plaintext 0 ciphertext 0

(bytevector-length plaintext)

gcm-state iv aad tag 0)

(display ciphertext)

(newline)

(let ((decrypted

(make-bytevector (bytevector-length plaintext))))

;; The assertion will fail if ciphertext, aad and tag

;; do not match up.

(assert (eq? ’ok (aes-gcm-decrypt!?

ciphertext 0 decrypted 0

(bytevector-length ciphertext)

gcm-state iv aad tag 0)))

(utf8->string decrypted))))

a #vu8(202 108 237 127 3 64 111 82 76 90 193 152 36

47 45 169 38 116 185 13 217 240 2 127 246 15)

⇒ "This is our message to you"

Chapter 2: Library reference 5

[Procedure]aes-gcm-decrypt!? source source-start target target-start k
gcm-state iv aad tag tag-start

Encrypts k bytes in the bytevector source starting at source-start with AES in Ga-
lois/Counter Mode (GCM) mode and writes the result to target at target-start.

The other arguments are as for aes-gcm-encrypt!.

Note: the return value must be checked by the caller. If the symbol ok is returned
then the data was authenticated correctly.

2.1.2 ARCFOUR stream cipher

The (industria crypto arcfour) library provides the well-known ARCFOUR stream ci-
pher. It is the fastest of the ciphers provided by this library collection.

Since this is a stream cipher there is no block length.

[Procedure]expand-arcfour-key key
Expands the bytevector key into an ARCFOUR keystream value. The return value
has an unspecified type and is suitable for use with the other procedures exported by
this library.

Never use the same key to encrypt two different plaintexts.

[Procedure]arcfour! source source-start target target-start k keystream
Reads k bytes from source starting at source-start, XORs them with bytes from the
keystream, and writes them to target starting at target-start. If source and target
are the same object then it is required that target-start be less then or equal to
source-start.

(import (industria crypto arcfour))

(let ((buf #vu8(90 60 247 233 181 200 38 52 121 82 133

98 244 159 12 97 90 157 43 183 249 170

73 244 126))

(keystream (expand-arcfour-key

(string->utf8 "hardly a secret"))))

(arcfour-discard! keystream 3000)

(arcfour! buf 0 buf 0 (bytevector-length buf) keystream)

(clear-arcfour-keystream! keystream)

(utf8->string buf))

⇒ "I AM POKEY THE PENGUIN!!!"

[Procedure]arcfour-discard! keystream n
Discards n bytes from the keystream keystream. It is recommended that the beginning
of the keystream is discarded. Some protocols, e.g. RFC 4345, require it.

[Procedure]clear-arcfour-keystream! keystream
Removes all key material from the keystream.

2.1.3 The Blowfish Cipher

The (industria crypto blowfish) library is a complete implementation of Bruce
Schneier’s Blowfish cipher. It is a symmetric block cipher with key length between 8 and
448 bits. The key length does not affect the performance.

Chapter 2: Library reference 6

[Procedure]expand-blowfish-key key
Expands a Blowfish key, which is a bytevector of length between 1 and 56 bytes (the
longer the better). The returned key schedule can be used with blowfish-encrypt!

or reverse-blowfish-schedule.

[Procedure]blowfish-encrypt! source source-index target target-index
schedule

Encrypts the eight bytes at source+source-start using Electronic Code Book (ECB)
mode. The result is written to target+target-start.

[Procedure]reverse-blowfish-schedule
Reverses a Blowfish key schedule so that it can be used with blowfish-decrypt!.

[Procedure]blowfish-decrypt! source source-index target target-index
schedule

The inverse of blowfish-encrypt!.

[Procedure]clear-blowfish-schedule!
Clears the Blowfish key schedule so that it no longer contains cryptographic material.
Please note that there is no guarantee that the key material will actually be gone
from memory. It might remain in temporary numbers or other values.

[Procedure]blowfish-cbc-encrypt! source source-start target target-start k
schedule iv

Encrypts k bytes in the bytevector source starting at source-start with Blowfish in
CBC mode and writes the result to target at target-start.

The argument k must be an integer multiple of 8, which is the block length.

The iv bytevector is an Initial Vector. It should be 8 bytes long, initialized to random
bytes. This procedure updates the iv after processing a block.

[Procedure]blowfish-cbc-decrypt! source source-start target target-start k
schedule iv

The inverse of blowfish-cbc-encrypt!.

2.1.4 ChaCha20 stream cipher

The (industria crypto chacha20) library provides the ChaCha20 stream cipher, a 20-
round variant of djb’s ChaCha20 specified by RFC 7539.

Since this is a stream cipher there is no block length.

[Procedure]chacha20-block! out key block-count nonce
Update the first 64 bytes of the bytevector out with the output from the ChaCha20
block function. The key is a 256-bit key given as a 16-byte bytevector. The block-
count is a 32-bit exact integer. The nonce is a 96-bit number used only once (some-
times called an IV), given as a 48-byte bytevector.

[Procedure]chacha20-keystream key block-count nonce
Opens a binary input port that yields the ChaCha20 keystream. The arguments are
the same as for chacha20-block!.

Chapter 2: Library reference 7

[Procedure]chacha20-encrypt! source source-start target target-start len
keystream

Copies len bytes from source to target, having the same interface as
bytevector-copy!, except that it encrypts the bytes using the output from
keystream.

The encryption is symmetric, so this is also the decryption primitive.

[Procedure]chacha20-encrypt source source-start len keystream
This is a convenience procedure that allocates a bytevector, but otherwise performs
the same operation as chacha20-encrypt.

2.1.5 Elliptic Curve Diffie-Hellman key exchange

The (industria crypto ecdh) library exports procedures for Elliptic Curve Diffie-Hellman
key exchange. The library is based on the X25519 and X448 functions from RFC 7748.
ECDH is similar to DH, see Section 2.1.8 [crypto dh], page 10, but uses Curve25519 or
Curve448. It is used when two parties want to generate a key without sending the actual
key over the network.

The same caveats that apply to regular DH also apply to ECDH.

[Procedure]make-ecdh-curve25519-secret
Generates a Curve25519 private key a and a public key K A.

[Procedure]make-ecdh-curve448-secret
Generates a Curve448 private key a and a public key K A.

[Procedure]ecdh-curve25519 a K B
Compute the shared key given Alice’s private key a and Bob’s public key K B.

(import (industria crypto ecdh))

(let-values ([(a K_A) (make-ecdh-curve25519-secret)]

[(b K_B) (make-ecdh-curve25519-secret)])

;; The bytevectors being compared are the shared secret

(equal? (ecdh-curve25519 a K_B)

(ecdh-curve25519 b K_A)))

⇒ #t

[Procedure]ecdh-curve448 a K B
Compute the shared key given Alice’s private key a and Bob’s public key K B.

[Procedure]X25519 k u
The X25519 function, which is normally not needed, but is exposed for those who
want to use it. It is a scalar multiplication on the Montgomery form of Curve25519.

[Procedure]X448 k u
Same as X25519, but with Curve448.

Chapter 2: Library reference 8

2.1.6 Edwards-curve Digital Signature Algorithm (EdDSA)

EdDSA is a public key signature algorithm based on the edwards25519 and edwards448
curves. It is used in place for e.g. RSA signatures or DSA. Currently only the Ed25519
variant is supported.

[Procedure]make-ed25519-public-key bv
Make an Ed25519 public key using bv, which is 32 bytes long.

[Procedure]ed25519-public-key? obj
True if obj is an Ed25519 public key.

[Procedure]ed25519-public-key=? key1 key2
True if key1 is the same Ed25519 public key as key2.

[Procedure]ed25519-public-key-value key
The public key bytevector for key.

[Procedure]make-ed25519-private-key bv
Make an Ed25519 private key using the secret bv, which is 32 bytes long.

[Procedure]ed25519-private-key? obj
True if obj is an Ed25519 private key.

[Procedure]ed25519-private-key-secret
The private key bytevector for key.

[Procedure]ed25519-private->public key
Returns the public key that corresponds to the Ed25519 private key.

[Procedure]eddsa-private-key-from-bytevector bv
Decodes bv as a private EdDSA key. This is intended to also support Ed448 in the
future.

[Procedure]ed25519-sign private-key msg
Generate a SHA-512 based Ed25519 signature of msg using private-key.

[Procedure]ed25519-verify public-key msg signature
Verify a SHA-512 based Ed25519 signature of msg that was purportedly made with
public-key. Returns #t iff the signature is valid.

2.1.7 Data Encryption Standard

The Data Encryption Standard (DES) is older than AES and uses shorter keys. To get
longer keys the Triple Data Encryption Algorithm (TDEA, 3DES) is commonly used instead
of DES alone.

The (industria crypto des) library is incredibly inefficient and the API is, for no good
reason, different from the AES library. You should probably use AES instead, if possible.

[Procedure]des-key-bad-parity? key
Returns #f if the DES key has good parity, or the index of the first bad byte. Each
byte of the key has one parity bit, so even though it is a bytevector of length eight (64
bits), only 56 bits are used for encryption and decryption. Parity is usually ignored.

Chapter 2: Library reference 9

[Procedure]des! bv key-schedule [o↑set E]
The fundamental DES procedure, which performs both encryption and decryption
in Electronic Code Book (ECB) mode. The eight bytes starting at o↑set in the
bytevector bv are modified in-place.

The o↑set can be omitted, in which case 0 is used.

The E argument will normally be omitted. It is only used by the des-crypt proce-
dure.

(import (industria crypto des))

(let ((buf (string->utf8 "security"))

(sched (permute-key (string->utf8 "terrible"))))

(des! buf sched)

buf)

⇒ #vu8(106 72 113 111 248 178 225 208)

(import (industria crypto des))

(let ((buf (bytevector-copy #vu8(106 72 113 111 248 178 225 208)))

(sched (reverse (permute-key (string->utf8 "terrible")))))

(des! buf sched)

(utf8->string buf))

⇒ "security"

[Procedure]permute-key key
Permutes the DES key into a key schedule. The key schedule is then used as an
argument to des!. To decrypt, simply reverse the key schedule. The return value is
a list.

[Procedure]tdea-permute-key key1 [key2 key3]
Permutes a 3DES key into a key schedule. If only one argument is given then it must
be a bytevector of length 24. If three arguments are given they must all be bytevectors
of length eight.

The return value’s type is unspecified.

[Procedure]tdea-encipher! bv o↑set key
Encrypts the eight bytes at o↑set of bv using the given 3DES key schedule.

[Procedure]tdea-decipher! bv o↑set key
The inverse of tdea-encipher!.

[Procedure]tdea-cbc-encipher! bv key iv o↑set count
Encrypts the count bytes at o↑set of bv using Cipher Block Chaining (CBC) mode.

The iv argument is the Initial Vector, which is XOR’d with the data before encryption.
It is a bytevector of length eight and it is modified for each block.

Both o↑set and count must be a multiples of eight.

[Procedure]tdea-cbc-decipher! bv key iv o↑set count
The inverse of tdea-cbc-encipher!.

Chapter 2: Library reference 10

[Procedure]des-crypt password salt
This is a password hashing algorithm that used to be very popular on Unix systems,
but is today too fast (which means brute forcing passwords from hashes is fast). The
password string is at most eight characters.

The algorithm is based on 25 rounds of a slightly modified DES.

The salt must be a string of two characters from the alphabet #\A–#\Z, #\a–#\z,
#\0–#\9, #\. and #\/.

(import (industria crypto des))

(des-crypt "password" "4t")

⇒ "4tQSEW3lEnOio"

A more general interface is also available, see Section 2.5.4 [password], page 51.

2.1.8 Diffie-Hellman key exchange

The (industria crypto dh) library exports procedures and constants for Diffie-Hellman
(Merkle) key exchange. D-H works by generating a pair of numbers, sending one of them
to the other party, and using the other one and the one you receive to compute a shared
secret. The idea is that it’s difficult for an eavesdropper to deduce the shared secret.

The D-H exchange must be protected by e.g. public key encryption because otherwise a
MITM attack is trivial. It is best to use a security protocol designed by an expert.

[Procedure]make-dh-secret generator prime bit-length
Generates a Diffie-Hellman secret key pair. Returns two values: the secret key (of
bitwise length bit-length) part and the public key part.

[Procedure]expt-mod base exponent modulus
Computes (mod (expt base exponent) modulus). This is modular exponentiation,
so all the parameters must be integers.

The exponent can also be negative (set it to -1 to calculate the multiplicative inverse
of base).

(import (industria crypto dh))

(let ((g modp-group15-g) (p modp-group15-p))

(let-values (((y Y) (make-dh-secret g p 320))

((x X) (make-dh-secret g p 320)))

;; The numbers being compared are the shared secret

(= (expt-mod X y modp-group15-p)

(expt-mod Y x modp-group15-p))))

⇒ #t

This library also exports a few well known modular exponential (MODP) Diffie-Hellman
groups (generators and primes) that have been defined by Internet RFCs. They are named
modp-groupN-g (generator) and modp-groupN-p (prime) where N is the number of the
group. Groups 1, 2, 5, 14, 15, 16, 17 and 18 are currently exported. They all have different
lengths and longer primes are more secure but also slower. See RFC 3526 for more on this.

Chapter 2: Library reference 11

2.1.9 Digital Signature Algorithm

The (industria crypto dsa) library provides procedures for creating and verifying DSA
signatures. DSA is a public key signature algorithm, which means that it uses private and
public key pairs. With a private key you can create a signature that can then be verified by
someone using the corresponding public key. The idea is that it’s very difficult to create a
correct signature without having access to the private key, so if the signature can be verified
it must have been made by someone who has access to the private key.

DSA is standardized by FIPS Publication 186. It is available at this web site: http://
csrc.nist.gov/publications/PubsFIPS.html.

There is currently no procedure to generate a new DSA key. Here is how to generate
keys with OpenSSL or GnuTLS:

openssl dsaparam 1024 | openssl gendsa /dev/stdin > dsa.pem

certtool --dsa --bits 1024 -p > dsa.pem

The key can then be loaded with dsa-private-key-from-pem-file.

[Procedure]make-dsa-public-key p q g y
Returns a DSA public key value. See the FIPS standard for a description of the
parameters.

To access the fields use dsa-public-key-p, dsa-public-key-q, dsa-public-key-g
and dsa-public-key-y.

[Procedure]dsa-public-key? obj
True if obj is a DSA public key value.

[Procedure]dsa-public-key-length key
Returns the number of bits in the p value of key. This is often considered to be the
length of the key. The bitwise-length of q is also important, it corresponds with the
length of the hashes used for signatures.

[Procedure]make-dsa-private-key p q g y x
Returns a DSA private key value. See the FIPS standard for a description of the
parameters.

To access the fields use dsa-private-key-p, dsa-private-key-q, dsa-private-

key-g, dsa-private-key-y and dsa-private-key-x.

[Procedure]dsa-private-key? obj
Returns #t if obj is a DSA private key.

[Procedure]dsa-private->public private-key
Converts a private DSA key into a public DSA key by removing the private fields.

[Procedure]dsa-private-key-from-bytevector bv
Parses bv as an ASN.1 DER encoded private DSA key.

[Procedure]dsa-private-key-from-pem-file ↓lename
Opens the file and reads a private DSA key. The file should be in Privacy Enhanced
Mail (PEM) format and contain an ASN.1 DER encoded private DSA key.

Encrypted keys are currently not supported.

http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html

Chapter 2: Library reference 12

[Procedure]dsa-signature-from-bytevector bv
Parses the bytevector bv as an ASN.1 DER encoded DSA signature. The return value
is a list with the r and s values that make up a DSA signature.

[Procedure]dsa-create-signature hash private-key
The hash is the message digest (as a bytevector) of the data you want to sign. The
hash and the private-key are used to create a signature which is returned as two
values: r and s.

The hash can e.g. be an SHA-1 message digest. Such a digest is 160 bits and the q
parameter should then be 160 bits.

[Procedure]dsa-verify-signature hash public-key r s
The hash is the message digest (as a bytevector) of the data which the signature is
signing.

Returns #t if the signature matches, otherwise #f.

2.1.10 Elliptic Curve Cryptography

The (industria crypto ec) provides algorithms and definitions for working with elliptic
curves.

Only curves over prime finite fields are currently supported. Points are either +inf.0

(the point at infinity) or a pair of x and y coordinates.

Some standardized curves are exported:

secp256r1

This curve is equivalent to a 3072-bit RSA modulus.

nistp256 Curve P-256. This is the same curve as above.

secp384r1

This curve is equivalent to a 7680-bit RSA modulus.

nistp384 Curve P-384. This is the same curve as above.

secp521r1

This curve is equivalent to a 15360-bit RSA modulus. The “521” is not a typo.

nistp521 Curve P-521. This is the same curve as above.

[Procedure]make-elliptic-prime-curve p a b G n h
Constructs a new elliptic-curve object given the domain parameters of a curve:

y2 ≡ x3 + ax+ b (mod p).

Normally one will be working with pre-defined curves, so this constructor can be
safely ignored. The curve definition will include all these parameters.

[Procedure]elliptic-prime-curve? obj
Returns #t if obj is an elliptic prime curve.

The accessors can be safely ignored unless you’re interested in the curves themselves.

[Procedure]elliptic-curve-a elliptic-curve
This is one of the parameters that defines the curve: an element in the field.

Chapter 2: Library reference 13

[Procedure]elliptic-curve-b elliptic-curve
This is one of the parameters that defines the curve: another element in the field.

[Procedure]elliptic-curve-G elliptic-curve
This is one of the parameters that defines the curve: the base point, i.e. an actual
point on the curve.

[Procedure]elliptic-curve-n elliptic-curve
This is one of the parameters that defines the curve: a prime that is the order of G
(the base point).

[Procedure]elliptic-curve-h elliptic-curve
This is one of the parameters that defines the curve: the cofactor.

[Procedure]elliptic-prime-curve-p elliptic-prime-curve
This is one of the parameters that defines the curve: the integer that defines the
prime finite field.

[Procedure]elliptic-curve=? elliptic-curve1 elliptic-curve2
Returns #t if the elliptic curve objects are equal (in the sense that all domain param-
eters are equal).

[Procedure]ec+ P Q elliptic-curve
This adds the points P and Q, which must be points on elliptic-curve.

[Procedure]ec- P [Q] elliptic-curve
This subtracts Q from P, both of which must be points on elliptic-curve. If Q is
omitted it returns the complement of P.

[Procedure]ec* multiplier P elliptic-curve
This multiplies P by multiplier. P must be a point on elliptic-curve and multiplier
must be a non-negative integer.

This operation is the elliptic curve equivalence of expt-mod.

[Procedure]bytevector->elliptic-point bytevector elliptic-curve
Converts bytevector to a point on elliptic-curve. When points are sent over the
network or stored in files they are first converted to bytevectors.

[Procedure]integer->elliptic-point integer elliptic-curve
Performs the same conversion as bytevector->elliptic-point, but first converts
integer to a bytevector.

[Procedure]->elliptic-point x elliptic-curve
A generic procedure that accepts as input an x that is either already a point, a
bytevector representing a point, or an integer representing a point.

[Procedure]elliptic-point->bytevector point elliptic-curve
Converts point to its bytevector representation. This representation is sometimes
hashed, e.g. in SSH public keys, so the canonical representation is used for compati-
bility with other software.

Chapter 2: Library reference 14

2.1.11 Elliptic Curve Digital Signature Algorithm (ECDSA)

The (industria crypto ecdsa) library builds on the (industria crypto ec) library and
provides an interface similar to (industria crypto dsa). The keys and the operations are
defined to work with elliptic curves instead of modular exponentiation.

[Procedure]make-ecdsa-public-key elliptic-curve Q
Constructs an ECDSA public key object. Q is a point on elliptic-curve. Q is only
checked to be on the curve if it is in bytevector format.

[Procedure]ecdsa-public-key? obj
Returns #t if obj is an ECDSA public key object.

[Procedure]ecdsa-public-key-curve ecdsa-public-key
Returns the curve that ecdsa-public-key uses.

[Procedure]ecdsa-public-key-Q ecdsa-public-key
The point on the curve that defines ecdsa-public-key.

[Procedure]ecdsa-public-key-length ecdsa-public-key
The bitwise length of the ECDSA public key ecdsa-public-key.

[Procedure]make-ecdsa-private-key elliptic-curve [d Q]
Constructs an ECDSA private key object. d is a secret multiplier, which gives a
public point Q on elliptic-curve.

If Q is omitted it is recomputed based on d and the curve. If d is omitted a random
multiplier is chosen. Please note the warning about entropy at the start of this section.
See Section 2.1 [crypto], page 2.

[Procedure]ecdsa-private-key? obj
Returns #t if obj is an ECDSA private key object.

[Procedure]ecdsa-private-key-d ecdsa-private-key
The secret multiplier of ecdsa-private-key.

[Procedure]ecdsa-private-key-Q ecdsa-private-key
The public point of ecdsa-private-key.

[Procedure]ecdsa-private->public ecdsa-private-key
Strips ecdsa-private-key of the secret multiplier and returns an ECDSA public key
object.

[Procedure]ecdsa-private-key-from-bytevector bytevector
Parses bytevector as an ECDSA private key encoded in RFC 5915 format. A curve
identifier is encoded along with the key. Currently only the curves secp256r1,
secp384r1 and secp521r1 are supported.

[Procedure]ecdsa-verify-signature hash ecdsa-public-key r s
Returns #t if the signature (r,s) was made by the private key corresponding to ecdsa-
public-key. The bytevector hash is the message digest that was signed.

Chapter 2: Library reference 15

[Procedure]ecdsa-create-signature hash ecdsa-private-key
Creates a signature of the bytevector hash using ecdsa-private-key. Returns the values
r and s.

ECDSA keys are normally defined to work together with some particular message digest
algorithm. RFC 5656 defines ECDSA with SHA-2 and this library provides the record
types ecdsa-sha-2-public-key and ecdsa-sha-2-private-key so that keys defined to
work with SHA-2 can be distinguished from other keys. Keys of this type are still usable
for operations that expect the normal ECDSA key types.

[Procedure]ecdsa-signature-from-bytevector bv
Parses the bytevector bv as an ASN.1 DER encoded ECDSA signature as per RFC
4492. The return value is a list with the r and s values that make up a ECDSA
signature. These values should be passed to ecdsa-verify-signature.

[Procedure]ecdsa-signature-to-bytevector r s
Encodes the ECDSA signature r and s as a bytevector in the ASN.1 DER format
given in RFC 4492.

[Procedure]make-ecdsa-sha-2-public-key elliptic-curve Q
Performs the same function as make-ecdsa-public-key, but the returned key is
marked to be used with SHA-2.

[Procedure]ecdsa-sha-2-public-key? obj
Returns #t if obj is an ECDSA public key marked to be used with SHA-2.

[Procedure]make-ecdsa-sha-2-private-key
Performs the same function as make-ecdsa-private-key, but the returned key is
marked to be used with SHA-2.

[Procedure]ecdsa-sha-2-private-key?
Returns #t if obj is an ECDSA private key marked to be used with SHA-2.

[Procedure]ecdsa-sha-2-verify-signature message ecdsa-sha2-public-key r s
The bytevector message is hashed with the appropriate message digest algorithm (see
RFC 5656) and the signature (r,s) is then verified. Returns #t if the signature was
made with the private key corresponding to ecdsa-sha2-public-key.

[Procedure]ecdsa-sha-2-create-signature message ecdsa-sha2-private-key
The bytevector message is hashed with the appropriate message digest algorithm
(see RFC 5656) and a signature is created using ecdsa-sha2-private-key. Returns the
values r and s.

[Procedure]ecdsa-sha-2-private-key-from-bytevector bytevector
Performs the same function as ecdsa-private-key-from-bytevector, except the
returned value is marked to be used with SHA-2.

Chapter 2: Library reference 16

2.1.12 Entropy and randomness

The (industria crypto entropy) library is meant to help with generating random data.
It tries to use the system’s /dev/urandom device if possible, otherwise it uses SRFI-27.

Please see the note at the beginning of the chapter.

[Procedure]bytevector-randomize! target [target-start k]
Writes k random bytes to the bytevector target starting at index target-start.

[Procedure]make-random-bytevector k
Returns a bytevector of length k with random content.

(import (industria crypto entropy))

(make-random-bytevector 8)

⇒ #vu8(68 229 38 253 58 70 198 161)

2.1.13 RSA public key encryption and signatures

The (industria crypto rsa) library implements the RSA (Rivest, Shamir and Adleman)
algorithm and a few helpers.

[Procedure]make-rsa-public-key n e
Returns an RSA public key object containing the modulus n and the public exponent
e.

[Procedure]rsa-public-key? obj
True if obj is a public RSA key.

[Procedure]rsa-public-key-n key

[Procedure]rsa-public-key-modulus key
Returns the modulus of key.

[Procedure]rsa-public-key-e key

[Procedure]rsa-public-key-public-exponent key
Returns the public exponent of key.

[Procedure]rsa-public-key-from-bytevector bytevector
Parses bytevector as an ASN.1 DER encoded public RSA key. The return value can
be used with the other procedures in this library.

[Procedure]rsa-public-key-length key
Returns the number of bits in the modulus of key. This is also the maximum length
of data that can be encrypted or decrypted with the key.

[Procedure]rsa-public-key-byte-length key
Returns the number of 8-bit bytes required to store the modulus of key.

[Procedure]make-rsa-private-key n e d [p q exponent1 exponent2 coe¡cient]
Returns an RSA private key object with the given modulus n, public exponent e, and
private exponent d.

The other parameters are used to improve the efficiency of rsa-encrypt. They are
optional and will be computed if they are omitted.

Chapter 2: Library reference 17

[Procedure]rsa-private-key? obj
True if obj is a private RSA key.

[Procedure]rsa-private-key-n key

[Procedure]rsa-private-key-modulus key
Returns the modulus of key.

[Procedure]rsa-private-key-public-exponent key
Returns the public exponent of key. This exponent is used for encryption and signature
verification.

[Procedure]rsa-private-key-d key

[Procedure]rsa-private-key-private-exponent key
Returns the private exponent of key. This exponent is used for decryption and signa-
ture creation.

[Procedure]rsa-private-key-prime1 key

[Procedure]rsa-private-key-prime2 key
These two procedures return the first and second prime factors (p,q) of the modulus
(n = pq).

[Procedure]rsa-private-key-exponent1 key
This should be equivalent to (mod d (- p 1)). It is used to speed up rsa-decrypt.

[Procedure]rsa-private-key-exponent2 key
This should be equivalent to (mod d (- q 1)). It is used to speed up rsa-decrypt.

[Procedure]rsa-private-key-coefficient key
This should be equivalent to (expt-mod q -1 p). It is used to speed up rsa-decrypt.

[Procedure]rsa-private->public key
Uses the modulus and public exponent of key to construct a public RSA key object.

[Procedure]rsa-private-key-from-bytevector bytevector
Parses bytevector as an ASN.1 DER encoded private RSA key. The return value can
be used with the other procedures in this library.

[Procedure]rsa-private-key-from-pem-file ↓lename
Opens the file and reads a private RSA key. The file should be in Privacy Enhanced
Mail (PEM) format and contain an ASN.1 DER encoded private RSA key.

Encrypted keys are currently not supported.

[Procedure]rsa-encrypt plaintext key
Encrypts the plaintext integer using the key, which is either a public or private RSA
key.

plaintext must be an exact integer that is less than the modulus of key.

Chapter 2: Library reference 18

[Procedure]rsa-decrypt ciphertext key
Decrypts the ciphertext integer using the key, which must be a private RSA key.

ciphertext must be an exact integer that is less than the modulus of key.

(import (industria crypto rsa))

(let ((key (make-rsa-private-key 3233 17 2753)))

(rsa-decrypt (rsa-encrypt 42 key) key))

⇒ 42

[Procedure]rsa-decrypt/blinding ciphertext key
This performs the same function as rsa-decrypt, but it uses RSA blinding. It has
been shown that the private key can be recovered by measuring the time it takes to
run the RSA decryption function. Use RSA blinding to protect against these timing
attacks.

For more technical information on the subject, see Paul C. Kocher’s article Timing At-
tacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems (http://
www.cryptography.com/resources/whitepapers/TimingAttacks.pdf).

It is often not enough to just use the plain encryption and decryption procedures; a
protocol for what to put in the plaintext should also be used. PKCS #1 (RFC 3447) is
a standard for how to perform RSA encryption and signing with padding. New protocols
should use one of the other protocols from the RFC.

[Procedure]rsa-pkcs1-encrypt plaintext public-key
Pads and encrypts the plaintext bytevector using public-key, a public RSA key. The
return value is an integer.

The plaintext can’t be longer than the length of the key modulus, in bytes, minus 11.

[Procedure]rsa-pkcs1-decrypt ciphertext private-key
The inverse of rsa-pkcs1-encrypt. Decrypts the ciphertext integer using private-key,
a private RSA key. The padding is then checked for correctness and removed.

(import (industria crypto rsa))

(let ((key (make-rsa-private-key

288412728347463293650191476303670753583

65537

190905048380501971055612558936725496993)))

(utf8->string

(rsa-pkcs1-decrypt

(rsa-pkcs1-encrypt (string->utf8 "Hello")

(rsa-private->public key))

key)))

⇒ "Hello"

[Procedure]rsa-pkcs1-decrypt-signature signature public-key
Decrypts the signature (a bytevector) contained in the signature integer by using the
public-key. The signature initially contains PKCS #1 padding, but this is removed.

[Procedure]rsa-pkcs1-encrypt-signature digest private-key
Sign the bytevector digest using private-key. The inverse of rsa-pkcs1-decrypt-
signature.

http://www.cryptography.com/resources/whitepapers/TimingAttacks.pdf
http://www.cryptography.com/resources/whitepapers/TimingAttacks.pdf
http://www.cryptography.com/resources/whitepapers/TimingAttacks.pdf

Chapter 2: Library reference 19

[Procedure]rsa-pkcs1-decrypt-digest signature public-key
This performs the same operation as rsa-pkcs1-decrypt-signature, except it then
treats the decrypted signature as a DER encoded DigestInfo. The return value is a
list containing a digest algorithm specifier and a digest.

[Procedure]rsa-pkcs1-encrypt-digest algorithm digest private-key
Create a DER encoded DigestInfo signature (inverse of rsa-pkcs1-decrypt-

digest). The digest must be a bytevector and should have a length appropriate
for the algorithm, which may be either an object ID or one of these symbols: md5,
sha-1, sha-224, sha-256, sha-384, sha-512, sha-512-224, sha-512-256, sha3-224,
sha3-256, sha3-384, sha3-512, shake-128, shake-256.

2.2 OpenPGP signature verification

The (industria openpgp) library provides procedures for reading OpenPGP keyrings and
verifying signatures. OpenPGP signatures can be created with e.g. GNU Private Guard
(GnuPG) and are often used to verify the integrity of software releases.

Version 4 keys and version 3/4 signatures are supported. The implemented public key
algorithms are RSA and DSA, and it verifies signatures made using the message digest
algorithms MD5, SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 (all the standard
algorithms except RIPE-MD160).

An OpenPGP key is actually a list of OpenPGP packets with a certain structure: first
is the primary key (e.g. an RSA or DSA key), next possibly a revocation, then a number of
user IDs, attributes, signatures and also subkeys (which are just like primary keys, except
marked as subkeys). See RFC 4880 section 11 for the exact composition. This library
represents keyrings as hashtables indexed by key ID and where the entries are lists of
packets in the order they appeared in the keyring file.

Please note that this library assumes the program that wrote the keyring did due dili-
gence when importing keys, and made sure that e.g. subkey binding signatures are verified,
and that the order of packets is correct.

[Procedure]port-ascii-armored? port
Returns false if the data at the beginning of port doesn’t look like a valid binary
OpenPGP packet. The port must be a binary input port. The port position is not
changed.

[Procedure]get-openpgp-packet port
Reads an OpenPGP packet from port, which must be a binary input port. An error
is raised if the packet type is unimplemented.

[Procedure]get-openpgp-keyring p
Reads a keyring from the binary input port p. Returns a hashtable where all primary
keys and subkeys are indexed by their key ID (an integer). The values in the hashtable
are lists that contain all OpenPGP packets associated with each key. No effort at all
is made to verify that keys have valid signatures.

Warning: this can take a while if the keyring is very big.

Chapter 2: Library reference 20

[Procedure]get-openpgp-keyring/keyid p keyid
Searches the binary input port p for the public key with the given keyid. Returns a
hashtable similar to get-openpgp-keyring, except it will only contain the primary
and subkeys associated with the keyid.

The keyid can be either a 64 or 32 bit exact integer.

Warning: this is faster than get-openpgp-keyring, but is still rather slow with big
keyrings. The speed depends on the SHA-1 implementation.

[Procedure]get-openpgp-detached-signature/ascii p
Reads a detached OpenPGP signature from the textual input port p. Returns either
an OpenPGP signature object or the end of file object.

These signatures can be created with e.g. gpg -a --detach-sign filename.

[Procedure]verify-openpgp-signature sig keyring p
Verifies the signature data in sig. The keyring hashtable is used to find the public
key of the signature issuer. The signed data is read from the binary input port p.

This procedure returns two values. These are the possible combinations:

• good-signature key-data – The signature matches the data. The key-data con-
tains the public key list that was used to verify the signature.

• bad-signature key-data – The signature does not match the data. The key-data
is the same as above.

• missing-key key-id – The issuer public key for the signature was not found in
the keyring. The key-id is the 64-bit key ID of the issuer.

[Procedure]openpgp-signature? obj
True if obj is an OpenPGP signature object. Such objects are read with
get-openpgp-detached-signature/ascii and are also contained in keyring entries.

[Procedure]openpgp-signature-issuer sig
The 64-bit key ID of the OpenPGP public key that issued the signature sig.

[Procedure]openpgp-signature-public-key-algorithm sig
Returns the name of the public key algorithm used to create the signature sig. This
is currently the symbol dsa or rsa.

[Procedure]openpgp-signature-hash-algorithm sig
The name of the message digest algorithm used to create the signature sig. This is
currently one of md5, sha-1, ripe-md160 (unsupported), sha-224, sha-256, sha-384
or sha-512.

[Procedure]openpgp-signature-creation-time sig
An SRFI-19 date object representing the time at which the signature sig was created.

[Procedure]openpgp-signature-expiration-time sig
An SRFI-19 date object representing the time at which the signature sig expires.
Returns #f if there’s no expiration time.

[Procedure]openpgp-user-id? obj
True if obj is an OpenPGP user id.

Chapter 2: Library reference 21

[Procedure]openpgp-user-id-value user-id
The string value of the user-id. This is often the name of the person who owns the
key.

[Procedure]openpgp-user-attribute? obj
True if obj is an OpenPGP user attribute. Attributes are used to encode JPEG
images. There’s currently no way to access the image.

[Procedure]openpgp-public-key? obj
True if obj is an OpenPGP primary key or subkey.

[Procedure]openpgp-public-key-subkey? key
True if obj is a subkey.

[Procedure]openpgp-public-key-value key
The DSA or RSA public key contained in the OpenPGP public key. The value
returned has the same type as the (crypto weinholt dsa) or (crypto weinholt

rsa).

[Procedure]openpgp-public-key-fingerprint key
The fingerprint of the OpenPGP public key as a bytevector. This is an SHA-1 digest
based on the public key values.

[Procedure]openpgp-format-fingerprint bv
Formats the bytevector bv, which was presumably created by openpgp-public-key-

fingerprint, as a string in the format preferred for PGP public key fingerprints.

[Procedure]openpgp-public-key-id key
The 64-bit key ID of the OpenPGP public key.

2.3 Off-the-Record Messaging

The (industria otr) library provides Off-the-Record Messaging (OTR), which is a security
protocol for private chat. It can be tunneled over any protocol that guarantees in-order
delivery (e.g. IRC or XMPP). It provides encryption, authentication, deniability and perfect
forward secrecy.

This library does not manage user identities, which is something the OTR Development
Team’s C library does. This choice was made to keep the implementation simple and focused
on the protocol only.

The website for OTR is http://www.cypherpunks.ca/otr/.

[Procedure]otr-message? str
Returns #t if str, which is a message from a remote party, contains an OTR message.
If it is an OTR message you should look up the OTR state that corresponds to the
remote party (possibly make a new state) and call otr-update!.

[Procedure]make-otr-state dsa-key mss [instance-tag [versions]]
Creates an OTR state value given the private DSA key dsa-key and a maximum
segment size mss. The state is used to keep track of session keys and incoming
message fragments.

http://www.cypherpunks.ca/otr/

Chapter 2: Library reference 22

The dsa-key must have a 160-bit q-parameter because of details in the protocol and
limitations of other implementations. A 1024-bit DSA key will work. See Section 2.1.9
[crypto dsa], page 11.

The maximum segment size mss is used to split long OTR messages into smaller parts
when OTR is used over a protocol with a maximum message size, e.g. IRC.

If an instance-tag is specified it must be a 32-bit integer not less than #x100. If it is
omitted or #f an instance tag will be randomly generated. OTR version 3 uses the
instance tags to identify which OTR state messages belongs to. Be sure to read the
documentation for otr-state-our-instance-tag. New for Industria 1.5.

If versions is not omitted it must be a list of acceptable OTR protocol versions. The
default is (2 3). New for Industria 1.5.

[Procedure]otr-update! state str
Processes the str message, which came from the remote party, and updates the state.
Use otr-empty-queue! to retrieve scheduled events.

[Procedure]otr-send-encrypted! state msg
This is used to send a message to the remote party. It encrypts and enqueues the msg
bytevector and updates the state. Use otr-empty-queue! to retrieve the encrypted
and formatted messages that should be sent to the remote party.

The msg must not contain a NUL (0) byte.

[Procedure]otr-authenticate! state secret [question]
Initiate or respond to an authentication request. After calling this procedure you
should use otr-empty-queue!, just like with otr-send-encrypted!.

The authentication protocol can be used to verify that both partyies know the secret
bytevector. The secret is never revealed over the network and is not even transmitted
in an encrypted form. The protocol used is the Socialist Millionaires’ Protocol (SMP),
which is based on a series of zero-knowledge proofs.

[Procedure]otr-empty-queue! state
Returns and clears the event queue. The queue is a list of pairs where the symbol in
the car of the pair determines its meaning. These are the possible types:

• (outgoing . line) – The cdr is a string that should be sent to the remote party.

• (encrypted . msg) – The cdr is a string that contains a decrypted message
that was sent by the remote party.

• (unencrypted . msg) – The cdr is a string that was sent unencrypted by the
remote party. This happens when a whitespace-tagged message is received.

• (session-established . whence) – A session has been established with the
remote party. It is now safe to call otr-state-their-dsa-key, otr-state-
secure-session-id, otr-send-encrypted! and otr-authenticate!. The cdr
is the symbol from-there if the session was initiated by the remote party. Oth-
erwise it is from-here.

• (session-finished . whom) – The session is now finished and no new mes-
sages can be sent over it. The cdr is either the symbol by-them or by-us. Note:
there is currently no way to finish the session from the local side, so by-us is not
used yet.

Chapter 2: Library reference 23

• (authentication . expecting-secret) – The remote party has started the
authentication protocol and now expects you to call otr-authenticate!.

• (authentication . #t) – The authentication protocol has succeeded and both
parties had the same secret.

• (authentication . #f) – The authentication protocol has failed. The secrets
were not identical.

• (authentication . aborted-by-them) – The remote party has aborted the
authentication protocol.

• (authentication . aborted-by-us) – The local party has encountered an er-
ror and therefore aborted the authentication protocol.

• (they-revealed . k) – The remote party revealed an old signing key. This
is a normal part of the protocol and the key is sent unencrypted to ensure the
deniability property. You might like to reveal the key somehow yourself in case
you’re tunneling OTR over an encrypted protocol.

• (we-revealed . k) – The local party has revealed an old signing key. Note:
currently not used.

• (undecipherable-message . #f) – An encrypted message was received, but it
was not possible to decrypt it. This might mean e.g. that the remote and local
parties have different sessions or that a message was sent out of order.

• (remote-error . msg) – The remote party encountered a protocol error and
sent a plaintext error message (probably in English).

• (local-error . con) – There was an exception raised during processing of a
message. The cdr is the condition object.

• (symmetric-key-request . (protocol . data)) – The remote party has re-
quested that the extra symmetric key be used to communicate in some out-
of-band protocol. See otr-send-symmetric-key-request!. New for Industria
1.5.

For forward-compatibility you should ignore any pair with an unknown car. Most
messages are quite safe to ignore if you don’t want to handle them.

[Procedure]otr-state-their-dsa-key state
Returns the remote party’s public DSA key. This should be used to verify the remote
party’s identity. If the SMP authentication protocol succeeds you can remember the
hash of the key for the next session. The user could also verify the key’s hash by cell
phone telephone or something.

[Procedure]otr-state-our-dsa-key state
Returns the local party’s private DSA key. This is useful when the user is on the phone
with the remote party. First convert it to a public key with dsa-private->public

and then hash it with otr-hash-public-key.

[Procedure]otr-hash-public-key public-dsa-key
Hashes a public DSA key and formats it so that it can be shown to the OTR user.

[Procedure]otr-state-secure-session-id state
Returns the secure session ID associated with the OTR state.

Chapter 2: Library reference 24

[Procedure]otr-format-session-id id
Formats a secure session ID in the format that is recommended when the ID should
be shown to the OTR user.

The first part of the ID should be shown in bold if the session was initiated by the
local party. Otherwise the second part should be bold.

[Procedure]otr-state-version state
The OTR protocol version used by the state. This is either the integer 2 or the integer
3. New for Industria 1.5.

[Procedure]otr-state-mss state
Returns the current maximum segment size of the OTR state.

[Procedure]otr-state-mss-set! state int
Sets int as the maximum segment size of the OTR state.

OTR protocol version 3 defines an extra symmetric key.

[Procedure]otr-send-symmetric-key-request! state protocol data
This sends a message to the remote party that requests that it uses the extra sym-
metric key for some out-of-band protocol.

The remote party may ignore this request if the OTR protocol version (as returned
by otr-state-version) is not at least 3.

The protocol parameter is an unsigned 32-bit integer that indicates what the key
should be used for. At the time this manual is written there are no defined uses. One
might expect a list of uses to appear in the protocol documentation at http://www.
cypherpunks.ca/otr/.

The data parameter is a bytevector containing protocol-dependent data.

[Procedure]otr-state-symmetric-key state
This returns the extra symmetric key in the form of a 256-bit bytevector.

[Procedure]otr-tag whitespace? versions
Constructs a string that may be sent to a remote party as a request to start an OTR
session. New for Industria 1.5.

If whitespace? is true then a whitespace tag will be made. This tag may be appended
to a normal message sent by the user. If the recipient’s client supports OTR it may
start a session, but if it does not support OTR then hopefully it will not show the
whitespaces.

The versions argument specifies which OTR protocol versions should be present in
the tag. This can either be a list of version numbers or the symbol all.

[Procedure]otr-state-our-instance-tag state
This returns the local instance tag. It is new for Industria 1.5.

It is intended for instance tags to be persistent across client restarts. If the local
party crashes then the remote party may still have an OTR session established. If
the local client were then to change its instance tag on restart it would not receive any
messages from the remote party and would not send error messages. To the remote
party it would look like they were being ignored.

http://www.cypherpunks.ca/otr/
http://www.cypherpunks.ca/otr/

Chapter 2: Library reference 25

Isn’t this the most boring manual you’ve ever read?

Version history:

• Industria 1.5 introduced support for protocol version 3. This new version of the protocol
uses instance tags, which are used to distinguish between different OTR sessions. This
fixes a problem with chat networks that allow multiple logins. The new version also
defines an extra symmetrical key that can be used by out-of-band protocols.

2.4 Secure Shell (SSH)

The (industria ssh) library hierarchy deals with the Secure Shell protocol. Both SSH
servers and clients can be written with these libraries. Some convenient abstractions are
currently missing though, e.g. a channel abstraction. These libraries hide the details of the
wire protocol and the cryptographic algorithms. The protocol is standardized by a series of
RFCs: 4250, 4251, 4252, 4253, 4254, etc.

No TCP server abstraction is provided by Industria. To make a server you will probably
need to use your implementation’s network abstractions.

It remains to be seen if this interface can be used for interactive applications. One
problem is get-ssh, which reads a whole SSH packet. This procedure is blocking. R6RS
doesn’t provide any procedures for event-driven programming, so the author has made no
effort to make this library work in an event-driven setting.

[Parameter]ssh-debugging
This SRFI-39 parameter controls debug output. It is a bit field with three bits
currently defined. Bit 0 enables general trace messages, bit 1 enables packet traces
and bit 2 enables packet hexdumps.

Default : #b000

[Parameter]ssh-debugging-port
This SRFI-39 parameter controls where debug output is written to. It defaults to the
error port that was current when the library top-level was run.

[Parameter]identification-protocol-version
This SRFI-39 parameter is used when constructing the local identification string. It
specifies which SSH protocol version number is supported.

Default : "2.0"

[Parameter]identification-software-version
This SRFI-39 parameter is used when constructing the local identification string. It
specifies the name and version of the client or server.

Default : "Industria 2"

[Parameter]identification-comments
This SRFI-39 parameter is used when constructing the local identification string. It
is #f or optionally a string of comments. This field is sometimes used to identify a
vendor.

Default : #f

Chapter 2: Library reference 26

The following parameters are when constructing the local kex exchange packet. It lists
the preferred algorithms. You may remove and reorder the algorithms, but you can’t intro-
duce new ones without first adding them to (industria ssh algorithms). The defaults
may change in the future.

[Parameter]preferred-kex-algorithms
This is a list of key exchange algorithm names in the order they are preferred.

Default : ("curve25519-sha256" "curve25519-sha256@libssh.org" "diffie-
hellman-group-exchange-sha256" "diffie-hellman-group-exchange-sha1"
"diffie-hellman-group14-sha1" "diffie-hellman-group1-sha1")

[Parameter]preferred-server-host-key-algorithms
This is a list of host key algorithm names in the order they are preferred. The server
may have more than one host key and this is used to decide between them.

Default : ("rsa-sha2-512" "rsa-sha2-256" "ssh-rsa" "ecdsa-sha2-nistp256"
"ecdsa-sha2-nistp384" "ecdsa-sha2-nistp521" "ssh-ed25519" "ssh-dss")

[Parameter]preferred-encryption-algorithms-client->server
This is a list of encryption algorithm names in the order they are preferred for com-
munication from the client to the server.

Default : ("aes128-ctr" "aes192-ctr" "aes256-ctr" "aes128-cbc" "aes192-cbc" "aes256-
cbc" "blowfish-cbc" "arcfour256" "arcfour128" "3des-cbc")

[Parameter]preferred-encryption-algorithms-server->client
This is a list of encryption algorithm names in the order they are preferred for com-
munication from the server to the client.

Default : ("aes128-ctr" "aes192-ctr" "aes256-ctr" "aes128-cbc" "aes192-cbc" "aes256-
cbc" "blowfish-cbc" "arcfour256" "arcfour128" "3des-cbc")

[Parameter]preferred-mac-algorithms-client->server
This is a list of message authentication code algorithms in the order they are preferred
for communication from the client to the server.

Default : ("hmac-md5" "hmac-sha1" "hmac-sha1-96" "hmac-md5-96")

[Parameter]preferred-mac-algorithms-server->client
This is a list of message authentication code algorithms in the order they are preferred
for communication from the server to the client.

Default : ("hmac-md5" "hmac-sha1" "hmac-sha1-96" "hmac-md5-96")

[Parameter]preferred-compression-algorithms-client->server
This is a list of compression algorithms for packets transmitted from the client to the
server.

Default : ("none")

[Parameter]preferred-compression-algorithms-server->client
This is a list of compression algorithms for packets transmitted from the server to the
client.

Default : ("none")

Chapter 2: Library reference 27

[Parameter]preferred-languages-client->server
This is currently not used.

Default : ()

[Parameter]preferred-languages-server->client
This is currently not used.

Default : ()

[Procedure]make-ssh-client binary-input-port binary-output-port
Starts an SSH client connection over the two given ports, which should be connected
to a server via TCP (or some other similar means).

If everything goes right an ssh-conn object is returned. The peer identification and
kexinit fields are valid.

[Procedure]make-ssh-server binary-input-port binary-output-port keys
Starts an SSH server connection over the two given ports, which should be connected
to a client via TCP (or some other similar means).

keys is a list of host keys. The currently supported key types are dsa-private-key

and ecdsa-sha-2-private-key.

If everything goes right an ssh-conn object is returned. The peer identification and
kexinit fields are valid.

[Procedure]ssh-key-exchange ssh-conn
This runs the negotiated key exchange algorithm on ssh-conn. After this is done the
client will have received one of the server’s public keys. The negotiated encryption
and MAC algorithms will have been activated.

[Procedure]ssh-conn-peer-identification ssh-conn
The identification string the peer sent. This is a string that contains the peer’s
protocol version, software version and optionally some comments.

[Procedure]ssh-conn-peer-kexinit ssh-conn
This is the peer’s key exchange initialization (kexinit) packet. It lists the peer’s
supported algorithms. See Section 2.4.2 [ssh transport], page 39.

[Procedure]ssh-conn-host-key ssh-conn
The server’s public key. This has unspecified contents before the ssh-key-exchange
procedure returns.

[Procedure]ssh-conn-session-id ssh-conn
The session ID of ssh-conn. This has unspecified contents before the ssh-key-

exchange procedure returns.

[Procedure]ssh-conn-registrar ssh-conn
Returns a procedure that can be used to register parsers and formatters for
SSH packet types. The returned procedure should be given as an argument to
register-connection and register-userauth.

Chapter 2: Library reference 28

[Procedure]ssh-error ssh-conn who message code irritants ...
Sends a disconnect packet to the peer. The packet contains the message and the
code. The connection is then closed and an error is raised.

The error code constants are defined elsewhere. See Section 2.4.2 [ssh transport],
page 39.

[Procedure]put-ssh ssh-conn pkt
Sends the SSH packet pkt to the peer of ssh-conn.

[Procedure]get-ssh ssh-conn
Reads an SSH packet object from the peer of ssh-conn. The end-of-file object will be
returned if the peer has closed the connection. The procedure blocks until a message
has been received. Any messages of the type ignore are ignored.

Packet types must be registered before they can be received. Initially only the trans-
port layer types are registered. If an unregistered type is received this procedure
returns a list of two items: the symbol unimplemented and the unparsed contents of
the packet. A packet of type unimplemented is sent to the peer.

[Procedure]close-ssh ssh-conn
Flushes the output port of ssh-conn, and then closes both the input and output ports.

[Procedure]flush-ssh-output ssh-conn
Flushes any pending output on ssh-conn.

The procedures below are used in the implementation of key re-exchange. After the initial
key exchange either party can initiate a key re-exchange. RFC 4253 has the following to
say on the subject:

It is RECOMMENDED that the keys be changed after each gigabyte of trans-
mitted data or after each hour of connection time, whichever comes sooner.
However, since the re-exchange is a public key operation, it requires a fair
amount of processing power and should not be performed too often.

The demonstration program secsh-client contains an example of how to initiate key
re-exchange. The server demonstration program honingsburk also handles key re-exchange,
but does not initiate it. See Section 3.2 [honingsburk], page 53.

[Procedure]build-kexinit-packet ssh-conn
Constructs and returns a key exchange packet for use by the local side.

[Procedure]key-exchange-packet? pkt
Returns #t if pkt should be given to process-key-exchange-packet for handling by
the key exchange logic.

[Procedure]ssh-key-re-exchange ssh-conn peer-kex local-kex
Initiates key re-exchange on ssh-conn. This requires the peer’s key exchange packet
peer-kex, and the local key exchange packet local-kex. The procedure returns before
the key re-exchange is finished. Both sides of the algorithm will need to communicate
to complete the exchange.

Chapter 2: Library reference 29

[Procedure]process-key-exchange-packet ssh-conn pkt
Updates the key exchange logic on ssh-conn with the contents of pkt. If the packet
is a kexinit packet and ssh-conn is a server, then this will automatically initiate the
key re-exchange algorithm.

The procedure may return the symbol finished to indicate that the key exchange
algorithm has finished and the new algorithms are used for packets sent to the peer.

Note: This interface is currently balanced in favor of servers. More experience in
using the library is needed to determine how to make the key re-exchange interface
better for clients. Suggestions are welcome.

2.4.1 Secure Shell Connection Protocol

The (industria ssh connection) library implements record types, parsers and formatters
for the connection protocol packets in SSH.

The connection protocol handles two types of communication: global requests and chan-
nels. The global requests can be used to setup TCP/IP port forwarding. Most commu-
nication over SSH passes through channels. Channels are opened with the channel-open

requests. The client and the server each assign an ID number to a channel: one ID is sent in
the channel-open packet, the other ID in the channel-open-confirmation packet. In In-
dustria all packets that are directed to a specific channel inherit from the channel-packet
record type and the ID can be found with the channel-packet-recipient procedure.

Strings and bytevectors may be used interchangeably when constructing packets. Strings
will automatically be converted with string->utf8. When these packets are received the
parser will either parse those fields either as a string or a bytevector. A bytevector will be
used when the field can contain more or less arbitrary data, e.g. filenames.

The text of this section uses the words “packet”, “message” and “request” interchange-
ably.

See RFC 4254 for a more detailed description of this protocol.

[Procedure]register-connection registrar
Registers the packet types for the connection protocol so that they may be received
and sent. A registrar may be obtained from an ssh-conn object using ssh-conn-

registrar.

[Procedure]make-global-request type want-reply?
Constructs a global request: a connection request not related to any channel. Some
global requests contain additional fields. These requests are represented by the
global-request/* packets.

[Procedure]global-request? obj
Returns true if obj is a global-request? packet.

[Procedure]global-request-type pkt
This field contains a string identifying the type of the request, e.g. "no-more-

sessions@openssh.com".

[Procedure]global-request-want-reply? pkt
This field is true if the sender expects a request-success or request-failure record
in response.

Chapter 2: Library reference 30

[Procedure]make-global-request/tcpip-forward want-reply? address port
Constructs a request that instructs the server to bind a TCP server port and forward
connections to the client.

[Procedure]global-request/tcpip-forward? obj
Returns true if obj is a global-request/tcpip-forward packet.

[Procedure]global-request/tcpip-forward-address req
This field is a string that represents the address to which the server should bind the
TCP server port. Some addresses are given special meaning:

"" The server should listen to all its addresses on all supported protocols
(IPv4, IPV6, etc).

"0.0.0.0"

The server should listen to all its IPv4 addresses.

"::" The server should listen to all its IPv6 addresses.

"localhost"

The server should listen to its loopback addresses on all supported pro-
tocols.

"127.0.0.1"

The server should listen to its IPv4 loopback address.

"::1" The server should listen to its IPv6 loopback address.

[Procedure]global-request/tcpip-forward-port req
This field is an integer representing the port number to which the server should bind
the TCP server port. If the number is 0 and want-reply? is true, the server will pick a
port number and send it to the client in a request-success packet (the port number
can be recovered with (unpack "!L" (request-success-data response))).

[Procedure]make-global-request/cancel-tcpip-forward want-reply?
address port

Constructs a message that undoes the effect of a global-request/tcpip-forward

request.

[Procedure]global-request/cancel-tcpip-forward? obj
Returns true if obj is a global-request/cancel-tcpip-forward packet.

[Procedure]global-request/cancel-tcpip-forward-address req
See global-request/tcpip-forward-address.

[Procedure]global-request/cancel-tcpip-forward-port req
See global-request/tcpip-forward-port.

[Procedure]make-request-success data
Constructs a packet which indicates that the previous global-request was successful.

[Procedure]request-success? obj
Returns true if obj is a request-success packet.

Chapter 2: Library reference 31

[Procedure]request-success-data pkt
This field contains a request-specific bytevector which is mostly empty.

[Procedure]make-request-failure
Returns an object which indicates that a global request failed.

[Procedure]request-failure? obj
Returns true if obj is a request-failure packet.

All requests to open a channel are represented by channel-open/* packets.

[Procedure]channel-open? obj
Returns true if obj is a channel-open packet.

[Procedure]channel-open-type pkt
A string representing the type of the channel-open request, e.g. "session".

[Procedure]channel-open-sender pkt
This is the ID for the sender side of the channel.

[Procedure]channel-open-initial-window-size pkt
This is the window size of the channel. The window size is used for flow-control and it
decreases when data is sent over the channel and increases when a channel-window-

adjust packet is sent. Each side of a channel has a window size.

[Procedure]channel-open-maximum-packet-size pkt
This is the maximum allowed packet size for data sent to a channel. It basically limits
the size of channel-data and channel-extended-data packets.

[Procedure]make-channel-open/direct-tcpip sender-id initial-window-size
connect-address connect-port originator-address originator-port

Constructs a request to open a new channel which is then connected to a TCP port.

[Procedure]channel-open/direct-tcpip? obj
Returns true if obj is a channel-open/direct-tcpip packet.

[Procedure]channel-open/direct-tcpip-connect-address pkt
This is the hostname or network address that the TCP connection should be connected
to.

[Procedure]channel-open/direct-tcpip-connect-port pkt
This is the port number that the TCP connection should be connected to.

[Procedure]channel-open/direct-tcpip-originator-address pkt
This is the network address of the machine that made the request.

[Procedure]channel-open/direct-tcpip-originator-port pkt
This is the port number on which the request was made. This is useful when a client
implements forwarding of client-local TCP ports.

Chapter 2: Library reference 32

[Procedure]make-channel-open/forwarded-tcpip sender-id
initial-window-size maximum-packet-size connected-address
connected-port originator-address originator-port

This request is used by the server to tell the client that a TCP connection has been
requested to a port for which the client sent a global-request/tcpip-forward re-
quest.

[Procedure]channel-open/forwarded-tcpip? obj
Returns true if obj is a channel-open/forwarded-tcpip packet.

[Procedure]channel-open/forwarded-tcpip-connected-address pkt
The address to which the TCP connection was made.

[Procedure]channel-open/forwarded-tcpip-connected-port pkt
The port to which the TCP connection was made.

[Procedure]channel-open/forwarded-tcpip-originator-address pkt
The remote address of the TCP connection.

[Procedure]channel-open/forwarded-tcpip-originator-port pkt
The remote port of the TCP connection.

[Procedure]make-channel-open/session sender-id initial-window-size
maximum-packet-size

Construct a request to open a session channel. This type of channel is used for inter-
active logins, remote command execution, etc. After the channel has been established
the client will send e.g. a channel-request/shell or a channel-request/exec re-
quest.

[Procedure]channel-open/session? obj
Returns true if obj is a channel-open/session packet.

[Procedure]make-channel-open/x11 type sender-id initial-window-size
maximum-packet-size originator-address originator-port

Constructs a message that opens an X11 channel. This message can be sent after
X11 forwarding has been requested.

[Procedure]channel-open/x11? obj
Returns true if obj is a channel-open/x11 packet.

[Procedure]channel-open/x11-originator-address pkt
The network address that originated the X11 connection.

[Procedure]channel-open/x11-originator-port pkt
The network port that originated the X11 connection.

[Procedure]channel-packet? obj
Returns true if obj is a channel-packet packet.

[Procedure]channel-packet-recipient pkt
This field is an integer that identifies the ID of the channel that should receive the
request.

Chapter 2: Library reference 33

[Procedure]make-channel-open-failure recipient reason-code description
language

Constructs a packet that represents a failure to open a channel. It is sent in response
to a channel-open/* request.

[Procedure]channel-open-failure? obj
Returns true if obj is a channel-open-failure packet.

[Procedure]channel-open-failure-reason-code pkt

SSH-OPEN-ADMINISTRATIVELY-PROHIBITED

SSH-OPEN-CONNECT-FAILED

SSH-OPEN-UNKNOWN-CHANNEL-TYPE

SSH-OPEN-RESOURCE-SHORTAGE

[Procedure]channel-open-failure-description pkt
This field is a human-readable reason for why the channel could not be opened.

[Procedure]channel-open-failure-language pkt
This field is most commonly unused and set to "".

[Procedure]make-channel-open-confirmation recipient sender
initial-window-size maximum-packet-size

Constructs a message that indicates a channel was successfully opened (identified
by recipient). The party that sends this message will include its own channel ID
(sender).

[Procedure]channel-open-confirmation? obj
Returns true if obj is a channel-open-confirmation packet.

[Procedure]channel-open-confirmation-sender pkt
This field contains the sender’s ID for this channel.

[Procedure]channel-open-confirmation-initial-window-size pkt
This is the sender’s initial window size. Analogous to the initial window size in a
channel-open/* request.

[Procedure]channel-open-confirmation-maximum-packet-size pkt
This is the sender’s maximum packet size. Analogous to the maximum packet size in
a channel-open/* request.

[Procedure]make-channel-window-adjust recipient amount
This constructs a packet that is used to increment the window size of channel recipient
by amount octets. It tells the remote part that the channel may receive additional
data. If the client has assigned to a channel a receive buffer of 4096 bytes and the
server sends 4096 bytes, the server will not be able to successfully send more data
until the client has processed some of the buffer. When there is more room in the
buffer the client can send a message of this type.

[Procedure]channel-window-adjust? obj
Returns true if obj is a channel-window-adjust packet.

Chapter 2: Library reference 34

[Procedure]channel-window-adjust-amount pkt
This field contains the number of bytes that will be added to the window size.

[Procedure]make-channel-data recipient value
This constructs a request that sends data over a channel.

[Procedure]channel-data? obj
Returns true if obj is a channel-data packet.

[Procedure]channel-data-value pkt
This field contains a bytevector with data being sent over the channel.

[Procedure]make-channel-extended-data recipient type value
This constructs a message that works just like channel-data, except it contains an
additional type field (explained below).

[Procedure]channel-extended-data? obj
Returns true if obj is a channel-extended-data packet.

[Procedure]channel-extended-data-type pkt
Data sent by a channel-data packet will normally be sent to a port connected with
standard output. A channel-extended-data field is used when the data destination
is a different port.

SSH-EXTENDED-DATA-STDERR

This constant specifies that the destination is the standard error port.

[Procedure]channel-extended-data-value pkt
This field contains a bytevector with the data sent over the channel, e.g. an error
message printed on the standard error port.

[Procedure]make-channel-eof recipient
This constructs a packet that signals the end-of-file condition on the channel identified
by the recipient ID.

[Procedure]channel-eof? obj
Returns true if obj is a channel-eof packet.

[Procedure]make-channel-close recipient
This constructs a message that is used when a channel is closed.

[Procedure]channel-close? obj
Returns true if obj is a channel-close packet.

[Procedure]make-channel-success recipient
This constructs a packet that indicates that the previous request was successful. These
packets are sent in response to requests where want-reply? is true.

[Procedure]channel-success? obj
Returns true if obj is a channel-success packet.

Chapter 2: Library reference 35

[Procedure]make-channel-failure recipient
This constructs a packet that indicates that the previous request was not successful.
These packets are sent in response to requests where want-reply? is true.

[Procedure]channel-failure? obj
Returns true if obj is a channel-failure packet.

[Procedure]channel-request? obj
Returns true if obj is a channel-request packet.

[Procedure]channel-request-type req
This field is a string that identifies the type of the request, e.g. "break" or "shell".

[Procedure]channel-request-want-reply? req
When this field is true the peer will respond with channel-success or
channel-failure. This field is not valid for all requests. Where it is not valid the
constructor will not include it as an argument.

[Procedure]make-channel-request/break recipient want-reply? length
This constructs a request that relays a “BREAK” signal on the channel. A “BREAK”
is a signalling mechanism used with serial consoles. This request is standardized by
RFC 4335.

[Procedure]channel-request/break? obj
Returns true if obj is a channel-request/break packet.

[Procedure]channel-request/break-length req
The length of the signal in milliseconds.

[Procedure]make-channel-request/env recipient want-reply? name value
Constructs a request that can be used before a shell or command has been started.
It is used to set an environment variable (of the same kind that SRFI-98 accesses).

[Procedure]channel-request/env? obj
Returns true if obj is a channel-request/env packet.

[Procedure]channel-request/env-name req
This is a string that identifies the name of the environment variable.

[Procedure]channel-request/env-value req
This is a bytevector that contains the value of the environment variable.

[Procedure]make-channel-request/exec recipient want-reply? command
Constructs a request that instructs the server to execute a command. The channel
identified by recipient will be connected to the standard input and output ports of
the program started by the server.

[Procedure]channel-request/exec? obj
Returns true if obj is a channel-request/exec packet.

[Procedure]channel-request/exec-command req
This field is a bytevector that contains the command that the server should try to
execute.

Chapter 2: Library reference 36

[Procedure]make-channel-request/exit-signal recipient name
core-dumped? message language

This constructs a packet which indicates that the program connected to the channel
identified by recipient has exited due to an operating system signal.

[Procedure]channel-request/exit-signal? obj
Returns true if obj is a channel-request/exit-signal packet.

[Procedure]channel-request/exit-signal-name req
This is a string that identifies the signal by name. For posix systems it is one of the
following: "ABRT", "ALRM", "FPE", "HUP", "ILL", "INT", "KILL", "PIPE", "QUIT",
"SEGV", "TERM", "USR1", "USR2". Other signal names may be used by following the
guidelines in section 6.10 of RFC 4254.

[Procedure]channel-request/exit-signal-core-dumped? req
This field is true when the operating system saved a process image (“core dump”)
when it sent the signal.

[Procedure]channel-request/exit-signal-message req
This may be a string that explains the signal.

[Procedure]channel-request/exit-signal-language req
This string may identify the language used in channel-request/exit-signal-

message.

[Procedure]make-channel-request/exit-status recipient value
This constructs a packet which indicates that the program connected to the channel
identified by recipient has exited voluntarily.

[Procedure]channel-request/exit-status? obj
Returns true if obj is a channel-request/exit-status packet.

[Procedure]channel-request/exit-status-value req
This is an integer that identifies the exit status of the program. It is the same kind
of number used by the the Scheme procedure exit.

[Procedure]make-channel-request/pty-req recipient want-reply? term
columns rows width height modes

Constructs a request that instructs the server to allocate a pseudo-terminal (PTY)
for the channel identified by recipient. A PTY is needed for interactive programs,
such as shells and Emacs.

[Procedure]channel-request/pty-req? obj
Returns true if obj is a channel-request/pty-req packet.

[Procedure]channel-request/pty-req-term req
This is a string that identifies the type of terminal that this PTY will be connected to.
If the terminal is compatible with the DEC VT100 the value would be "vt100". This
value is also the environment variable TERM. The set of supported terminal types
depends on the server. Typically the software running on an SSH server uses the
“terminfo” database.

Chapter 2: Library reference 37

[Procedure]channel-request/pty-req-columns req
This field contains the number of columns the terminal supports, e.g. 80. The
channel-request/window-change request can be used to update this value if the
terminal supports resizing.

[Procedure]channel-request/pty-req-rows req
This field contains the number of rows the terminal supports, e.g. 24.

[Procedure]channel-request/pty-req-width req
This field specifies the width of the terminal in pixels.

[Procedure]channel-request/pty-req-height req
This field specifies the height of the terminal in pixels.

[Procedure]channel-request/pty-req-modes req
This is a bytevector that encodes POSIX terminal modes. Unlike the size of the
terminal, it is not possible to change the modes after the PTY has been created. The
client should emulate a terminal set to “raw” mode and send a correct list of terminal
modes. The server will then cooperate to handle the rest. This means that, unlike
with telnet, the client will generally not do local “canonical” terminal processing.

[Procedure]bytevector->terminal-modes bv
Decodes the modes from a channel-request/pty-req. The return value is an asso-
ciation list.

[Procedure]terminal-modes->bytevector modes
The inverse of bytevector->terminal-modes. All modes specified by RFC 4254 can
be encoded.

(import (industria ssh connection))

(terminal-modes->bytevector ’((VINTR . 3) (VERASE . 127)))

⇒ #vu8(1 0 0 0 3 3 0 0 0 127 0)

[Procedure]make-channel-request/shell recipient want-reply?
Constructs a request that starts a login shell on the channel identified by recipient.
Normally a PTY must first have been connected to the channel.

[Procedure]channel-request/shell? obj
Returns true if obj is a channel-request/shell packet.

[Procedure]make-channel-request/signal recipient name
Construct a packet that sends a signal to the program connected to the channel
identified by recipient.

[Procedure]channel-request/signal? obj
Returns true if obj is a channel-request/signal packet.

[Procedure]channel-request/signal-name req
This field contains a signal name of the same type as that used by
channel-request/exit-signal.

Chapter 2: Library reference 38

[Procedure]make-channel-request/subsystem recipient want-reply? name
Constructs a request that a subsystem should be connected to the channel identified
by recipient.

[Procedure]channel-request/subsystem? obj
Returns true if obj is a channel-request/subsystem packet.

[Procedure]channel-request/subsystem-name req
This field identifies the subsystem being requested, e.g. "sftp".

[Procedure]make-channel-request/window-change recipient columns rows
width height

Construct a message that tells the server that the terminal window associated
with a channel has been resized. The channel should have a PTY (see
channel-request/pty-req).

[Procedure]channel-request/window-change? obj
Returns true if obj is a channel-request/window-change packet.

[Procedure]channel-request/window-change-columns req
Contains the new character cell width of the terminal window.

[Procedure]channel-request/window-change-rows req
Contains the new character cell height of the terminal window.

[Procedure]channel-request/window-change-width req
Contains the new pixel width of the terminal window.

[Procedure]channel-request/window-change-height req
Contains the new pixel height of the terminal window.

[Procedure]make-channel-request/x11-req recipient want-reply?
single-connection? protocol cookie screen

Constructs an X11 (X Window System) forwarding request.

[Procedure]channel-request/x11-req? obj
Returns true if obj is a channel-request/x11-req packet.

[Procedure]channel-request/x11-req-single-connection? req
If this field is true when only one X11 connection should be forwarded.

[Procedure]channel-request/x11-req-protocol req
This field identifies an X11 authentication protocol. The most common value is
"MIT-MAGIC-COOKIE-1".

[Procedure]channel-request/x11-req-cookie req
This is a “magic cookie” encoded as a hexadecimal string. It is used with "MIT-MAGIC-

COOKIE-1". It is recommended by RFC 4254 that this cookie should be different
from the actual cookie used by the X11 server. When receiving a channel-open/x11

request the cookie can be intercepted, verified and replaced with the real one.

Chapter 2: Library reference 39

[Procedure]channel-request/x11-req-screen req
An X11 display can have, in X jargon, multiple screens. Normally this field would be
0.

[Procedure]make-channel-request/xon-xoff recipient client-can-do?
Constructs a message that tells the client when it can do local processing of terminal
flow control (C-s and C-q).

[Procedure]channel-request/xon-xoff? obj
Returns true if obj is a channel-request/xon-xoff packet.

[Procedure]channel-request/xon-xoff-client-can-do? req
This flag is true if the client is allowed to do local processing of terminal flow control.
If the flag is false then flow control is done on the server.

2.4.2 Secure Shell Transport Layer Protocol

The (industria ssh transport) library implements record types, parsers and formatters
for the transport layer packets in SSH.

See RFC 4253 for a description of this protocol.

[Procedure]register-transport registrar
Registers the packet types for the transport layer so that they may be received and
sent. A registrar may be obtained using ssh-conn-registrar.

[Procedure]make-disconnect code message language
Constructs a packet that closes the SSH connection. After sending or receiving this
message the connection should be closed with close-ssh. The ssh-error proce-
dure may be more convenient than manually constructing and sending a disconnect

packet.

[Procedure]disconnect? obj
Returns #t if obj is a disconnect packet.

[Procedure]disconnect-code pkt
This field is an integer that represents the cause of the disconnect. The reason could
be one of these (exported) constants:

Chapter 2: Library reference 40

SSH-DISCONNECT-HOST-NOT-ALLOWED-TO-CONNECT

SSH-DISCONNECT-PROTOCOL-ERROR

SSH-DISCONNECT-KEY-EXCHANGE-FAILED

SSH-DISCONNECT-RESERVED

SSH-DISCONNECT-MAC-ERROR

SSH-DISCONNECT-COMPRESSION-ERROR

SSH-DISCONNECT-SERVICE-NOT-AVAILABLE

SSH-DISCONNECT-PROTOCOL-VERSION-NOT-SUPPORTED

SSH-DISCONNECT-HOST-KEY-NOT-VERIFIABLE

SSH-DISCONNECT-CONNECTION-LOST

SSH-DISCONNECT-BY-APPLICATION

SSH-DISCONNECT-TOO-MANY-CONNECTIONS

SSH-DISCONNECT-AUTH-CANCELLED-BY-USER

SSH-DISCONNECT-NO-MORE-AUTH-METHODS-AVAILABLE

SSH-DISCONNECT-ILLEGAL-USER-NAME

[Procedure]disconnect-message pkt
This is a human-readable explanation for the disconnect.

[Procedure]disconnect-language pkt
Most commonly unused, "".

[Procedure]make-ignore data
Construct a new ignore packet using the bytevector data as the payload. These
packets are ignored by receivers but can be used to make traffic analysis more difficult.

[Procedure]ignore? obj
Returns #t if obj is an ignore packet.

[Procedure]make-unimplemented sequence-number
This constructs a message that should be sent when a received packet type is not
implemented.

[Procedure]unimplemented? obj
Returns #t if obj is an unimplemented packet.

[Procedure]unimplemented-sequence-number pkt
Each packet sent over an SSH connection is given an implicit sequence number. This
field exactly identifies one SSH packet.

[Procedure]make-debug always-display? message language
Constructs a debug packet. It contains a message that a client or server may optionally
display to the user.

[Procedure]debug? obj
Returns #t if obj is a debug packet.

[Procedure]debug-always-display? pkt
If this field is true then the message should be displayed.

Chapter 2: Library reference 41

[Procedure]debug-message pkt
This is a string containing the debugging message. If it is displayed to the user it
should first be filtered.

[Procedure]debug-language pkt
Most commonly unused, "".

[Procedure]make-service-request name
This constructs a service request packet. The first service requested is normally
"ssh-userauth". See Section 2.4.3 [ssh userauth], page 42.

[Procedure]service-request? obj
Returns #t if obj is a service-request packet.

[Procedure]service-request-name pkt
This is the name of the service being requested, e.g. "ssh-userauth".

[Procedure]make-service-accept name
Constructs a request which indicates that access to a requested service was granted.

[Procedure]service-accept? obj
Returns #t if obj is a service-accept packet.

[Procedure]service-accept-name pkt
This field contains the name of the service to which access was granted.

[Procedure]make-kexinit cookie kex-algorithms server-host-key-algorithms
encryption-algorithms-client-to-server
encryption-algorithms-server-to-client mac-algorithms-client-to-server
mac-algorithms-server-to-client compression-algorithms-client-to-server
compression-algorithms-server-to-client languages-client-to-server
languages-server-to-client ↓rst-kex-packet-follows? reserved

Constructs a kexinit packet, which is used as part of the key exchange algorithm.
The arguments are explained below. You probably want to use build-kexinit-

packet instead of this procedure.

[Procedure]kexinit? obj
Returns #t if obj is a kexinit packet.

[Procedure]kexinit-cookie pkt
This field is a random bytevector. It is used in the key exchange to make things more
difficult for an attacker.

[Procedure]kexinit-kex-algorithms pkt
A list of the supported key exchange algorithms (mostly variations on Diffie-Hellman).

[Procedure]kexinit-server-host-key-algorithms pkt
A list of the supported host key algorithms.

[Procedure]kexinit-encryption-algorithms-client-to-server pkt
A list of the supported encryption algorithms for packets sent from the client to the
server.

Chapter 2: Library reference 42

[Procedure]kexinit-encryption-algorithms-server-to-client pkt
A list of the supported encryption algorithms for packets sent from the server to the
client.

[Procedure]kexinit-mac-algorithms-client-to-server pkt
A list of the supported Message Authentication Code (MAC) algorithms for packets
sent from the client to the server.

[Procedure]kexinit-mac-algorithms-server-to-client pkt
A list of the supported Message Authentication Code (MAC) algorithms for packets
sent from the server to the client.

[Procedure]kexinit-compression-algorithms-client-to-server pkt
A list of the supported compression algorithms for packets sent from the client to
the server. The algorithm "none" is currently the only implemented compression
algorithm.

[Procedure]kexinit-compression-algorithms-server-to-client pkt
A list of the supported compression algorithms for packets sent from the server to
the client. The algorithm "none" is currently the only implemented compression
algorithm.

[Procedure]kexinit-languages-client-to-server pkt
Normally never used. Set to the empty list.

[Procedure]kexinit-languages-server-to-client pkt
Normally never used. Set to the empty list.

[Procedure]kexinit-first-kex-packet-follows? pkt
If this field is true then the server and client will try to cooperate in order to make
the key exchange run faster over connections with high latency. This optimization
only works when the server and client both prefer the same algorithms.

[Procedure]kexinit-reserved pkt
This field must be zero.

[Procedure]make-newkeys
Constructs a new newkeys packet. This message is used as part of key exchange to
notify the remote side that new encryption keys are being used.

[Procedure]newkeys? obj
Returns #t if obj is a newkeys packet.

2.4.3 Secure Shell Authentication Protocol

The (industria ssh userauth) library implements record types, parsers and formatters
for the authentication protocol packets in SSH.

See RFC 4252 for a more detailed description of this protocol. In this protocol
the client sends packets of type userauth-request. The type names that start with
userauth-request/ are sub-types that contain user credentials. All other packet types
documented here are sent by the server.

Chapter 2: Library reference 43

All user authentication requests contain a user name, a service name and a method
name. The service name most commonly used is "ssh-connection", which requests access
to the connection protocol. See Section 2.4.1 [ssh connection], page 29.

[Procedure]register-userauth registrar
Registers the packet types for the authentication protocol so that they may be received
and sent. A registrar may be obtained using ssh-conn-registrar.

[Procedure]register-userauth-password registrar
Registers the packet types for the password authentication protocol. This is a sup-
plement to register-userauth.

[Procedure]register-userauth-public-key registrar
Registers the packet types for the public key authentication protocol. This is a sup-
plement to register-userauth.

[Procedure]deregister-userauth registrar
Deregisters all authentication protocol packet types.

[Procedure]make-userauth-request username service method
Constructs a new user authentication request. This particular procedure is only good
for constructing requests that use the "none" method. When such a request is sent
to the server it will respond with a list of available authentication methods. To make
a proper request use one of the make-userauth-request/* procedures below. Those
procedures automatically include the correct method in the request. The service is
normally "ssh-connection". See Section 2.4.1 [ssh connection], page 29.

[Procedure]userauth-request? obj
Returns true if obj is a userauth-request packet. This includes
userauth-request/password packets, and so on.

[Procedure]userauth-request-username request
This returns the user name field of request.

[Procedure]userauth-request-service request
This returns the service name field of request.

[Procedure]userauth-request-method request
This returns the method name field of request. Examples include "none", "password"
and "publickey".

If the server does not like the credentials provided in a userauth-request it will send
a userauth-failure packet.

[Procedure]make-userauth-failure can-continue partial?
Constructs a message that indicates to the client that the user authentication request
was not successful.

[Procedure]userauth-failure? obj
Returns true if obj is a userauth-failure packet. These packets indicate the the
client was denied access to the requested service. The credentials might be incorrect
or the server might be requesting additional authentication requests (see below).

Chapter 2: Library reference 44

[Procedure]userauth-failure-can-continue failure
This returns a list of authentication methods that “can continue”, i.e. methods that
might be successful given that correct credentials are provided.

[Procedure]userauth-failure-partial? failure
This is a boolean that indicates partial success. The server might require multiple
successful authentication requests (see RFC 4252).

[Procedure]make-userauth-success
Constructs a packet that indicates to the client that the user authentication was
successful. The client can now use the requested service (e.g. the connection protocol).
This message has no fields.

[Procedure]userauth-success? obj
Returns true if obj is a userauth-success packet.

The server can send a banner before the user authenticates. The banner might often
contain a warning about unauthorized access.

[Procedure]make-userauth-banner message language
This constructs a textual message that the server can send to the client. The client
software can then display it to the user. This happens before user authentication is
attempted and often contains a warning about unauthorized accesss.

[Procedure]userauth-banner? obj
Returns true if obj is a userauth-banner packet.

[Procedure]userauth-banner-message banner
This field is a message that the client can show to the user.

[Procedure]userauth-banner-language banner
This field might indicate the language of the text in the banner, but is most commonly
empty and not used.

The client can try to authenticate with a password. Note that the unencrypted password
is seen by the server. It’s important to check hosts keys to make sure you’re connecting to
the right server.

[Procedure]make-userauth-request/password username service password
Constructs a user authentication request. This is a normal attempt to login with a
user name and password. There is an alternative protocol for these types of login
requests: the "keyboard-interactive" method (support is planned).

[Procedure]userauth-request/password? obj
Returns true if obj is a userauth-request/password packet.

[Procedure]userauth-request/password-value request
Returns the password field for this user authentication request.

The server can request that the client should change its password.

Chapter 2: Library reference 45

[Procedure]make-userauth-password-changereq prompt language
This constructs a password change request. Some servers might send this packet if
e.g. they use a password expiry system.

[Procedure]userauth-password-changereq? obj
Returns true if obj is a userauth-request/changereq packet.

[Procedure]userauth-password-changereq-prompt changereq
This is the message to show the user when prompting for the new password.

[Procedure]userauth-password-changereq-language changereq
This is the language used in the password change request prompt.

After having received a request to change its password a client may send a
userauth-request/password-change packet.

[Procedure]make-userauth-request/password-change username service old
new

Constructs a request to authenticate the user and at the same time change
the user’s password. This message may be sent without having received a
userauth-request/changereq packet. Please see section 8 of RFC 4252 for the
meaning of the packet that the server will send in response to this packet.

[Procedure]userauth-request/password-change? obj
Returns true if obj is a userauth-request/password-change packet.

[Procedure]userauth-request/password-change-old request
This field contains the user’s current password.

[Procedure]userauth-request/password-change-new request
This field contains the user’s new password.

[Procedure]make-userauth-request/public-key-query username service key
Before performing a potentially expensive private key operation the client may ask
the server if a specific key might be used to authenticate.

[Procedure]userauth-request/public-key-query? obj
Returns true if obj is a userauth-request/public-key-query packet.

[Procedure]userauth-request/public-key-query-algorithm request
This field is automatically filled in by make-userauth-request/public-key-query

to contain the public key algorithm name of the key contained in the query.

[Procedure]userauth-request/public-key-query-key request
This field contains an SSH public key.

[Procedure]make-userauth-public-key-ok algorithm key
The server sends userauth-public-key-ok to indicate that the user may try to
authenticate with the given key.

[Procedure]userauth-public-key-ok? obj
Returns true if obj is a userauth-public-key-ok packet.

Chapter 2: Library reference 46

[Procedure]userauth-public-key-ok-algorithm request
This is a copy of the algorithm name contained in the userauth-request/public-

key-query packet.

[Procedure]userauth-public-key-ok-key request
This is a copy of the public key contained in the userauth-request/public-key-

query packet.

[Procedure]make-userauth-request/public-key username service public-key
This procedure creates an unsigned request to authenticate with public key cryptog-
raphy. The client may try to authenticate itself by sending a signed request to the
server. The server will have a copy of the public key on file, e.g. stored in the user’s
authorized_keys file. By using the public key it can confirm that the client is pos-
session of the corresponding private key. The packet returned by this procedure may
be signed with sign-userauth-request/public-key.

[Procedure]userauth-request/public-key? obj
Returns true if obj is a userauth-request/public-key packet.

[Procedure]userauth-request/public-key-algorithm request
This field indicates the public key algorithm name of the public key in the request.
It is automatically filled in when the request is constructed.

[Procedure]userauth-request/public-key-key request
This field contains an SSH public key object. See Section 2.4.5 [ssh public-keys],
page 47.

[Procedure]sign-userauth-request/public-key request session-id private-key
This generates a signed userauth-request/public-key packet. It needs an un-
signed request, which may be created with make-userauth-request/public-key.
The session-id can be recovered with ssh-conn-session-id. The private-key must
be a private DSA or ECDSA key (support for RSA signing is planned). The signed
request uses the SSH connection’s session ID and can therefore not be used with any
other connection.

2.4.4 SSH private key format conversion

The (industria ssh private-keys) library parses SSH private keys. The formats DSA

PRIVATE KEY, RSA PRIVATE KEY, EC PRIVATE KEY and OPENSSH PRIVATE KEY are sup-
ported.

Password-protected keys are not supported.

[Procedure]get-ssh-private-keys p
Read the next list of public keys from the textual input port p. Keys are returned
either as their regular private key type (for DSA, RSA and EC keys); or as OpenSSH
private key objects (see below)

Note that this returns a list. This is done to support the OpenSSH private key format,
which bundles several keys (including the public keys) into a single structure.

[Procedure]openssh-private-key? obj
True if obj is an OpenSSH private key.

Chapter 2: Library reference 47

[Procedure]openssh-private-key-public key
The public key component of the OpenSSH private key.

[Procedure]openssh-private-key-private key
The private key component of the OpenSSH private key.

[Procedure]openssh-private-key-comment key
The comment on the OpenSSH private key. Usually the username and hostname
where the key was generated.

2.4.5 SSH public key format conversion

Use (industria ssh public-keys) to convert public RSA, DSA, and ECDSA keys from
records to the binary SSH public key format, and the other way around. SSH is the name
of a network protocol for secure terminal connections defined by RFCs 4250-4254. The key
format is specified by RFC 4716. ECDSA keys are specified by RFC 5656.

The types used for RSA, DSA and ECDSA keys in this library are the same types used
elsewhere. The ECDSA keys must have the record type ecdsa-sha-2-public-key.

Future work would be to implement parsing of the various textual formats that contain
Base64 public SSH keys.

[Procedure]get-ssh-public-key p
Reads a public RSA/DSA/ECDSA key encoded in the SSH public key format from
the binary input port p.

[Procedure]ssh-public-key->bytevector key
Converts the public RSA/DSA/ECDSA key to the SSH public key format.

[Procedure]ssh-public-key-algorithm key
Returns the SSH algorithm identifier of key. For RSA keys this is "ssh-rsa", for
DSA keys it is "ssh-dss", and for ECDSA keys it is "ecdsa-sha2-[identifier]"
where [identifier] identifies the curve.

This is a legacy procedure.

[Procedure]ssh-public-key-algorithm* key
Returns a list of valid SSH algorithm identifiers for key. This is the same as
ssh-public-key-algorithm, but more than one algorithm can be returned.

[Procedure]ssh-public-key-fingerprint key [algorithm]
The fingerprint of the RSA/DSA/ECDSA key in the same format used by common
SSH software and specified by RFC 4716. The algorithm is either sha256 (default) or
md5.

[Procedure]ssh-public-key-random-art key [algorithm]
The random art of the RSA/DSA/ECDSA key. This is a visual representation of
the key can is easier for humans to distinguish than fingerprints. This is the same
art that OpenSSH’s VisualHostKey feature displays. The algorithm is either sha256
(default) or md5.

Chapter 2: Library reference 48

2.5 Various utilities

2.5.1 Base 64 encoding and decoding

The (industria base64) library provides procedures for dealing with the standard Base
64 encoding from RFC 4648 and some variations thereof. The Base 64 encoding can be
used to represent arbitrary bytevectors purely in printable ASCII.

One variation of Base 64 is in the alphabet used. The standard encoding uses an alphabet
that ends with #\+ and #\/, but these characters are reserved in some applications. One
such application is HTTP URLs, so there is a special encoding called base64url that simply
uses a different alphabet.

The line length can also vary. Some applications will need Base 64 encoded strings that
have no line endings at all, while other applications have 64 or 76 characters per line. For
these uses the line length must be a multiple of four characters. Sometimes there is not
enough input to get a multiple of four, but then the padding character #\= is used. Some
applications don’t use padding.

Some applications have their own “Base 64” encodings that encode bits in a different
order. Such will be deemed magic and shall not work with this library.

[Procedure]base64-encode bv [start end line-length no-padding alphabet port]
Encodes the bytevector bv in Base 64 encoding. Optionally a range of bytes can be
specified with start and end.

If a maximum line length is required, set line-length to an integer multiple of four (the
default is #f). To omit padding at the end of the data, set no-padding or a non-false
value. The alphabet is a string of length 64 (by default base64-alphabet).

The port is either a textual output port or #f, in which case this procedure returns
a string.

[Procedure]base64-decode str [alphabet port strict? strict-padding?]
Decodes the Base 64 data in str. The result is written to the binary output port or
returned as a bytevector if port is #f or omitted.

If strict? is true or omitted then the string has to contain pure Base 64 data and no
whitespace or other extra characters. Otherwise non-alphabet characters are ignored.

If strict-padding? is true or omitted then the string has to be padded to a multiple
of four characters.

The default alphabet is base64-alphabet.

[Procedure]put-delimited-base64 port type bv [line-length]
Write the Base 64 encoding of bv to the port. The output is delimited by BE-
GIN/END lines that include the type.

(import (industria base64))

(put-delimited-base64 (current-output-port) "EXAMPLE"

(string->utf8 "POKEY THE PENGUIN"))

a -----BEGIN EXAMPLE-----

a UE9LRVkgVEhFIFBFTkdVSU4=

a -----END EXAMPLE-----

Chapter 2: Library reference 49

[Procedure]get-delimited-base64 port [strict?]
Reads a delimited Base 64 encoded bytevector and returns two values: type (a string)
and data (a bytevector). The data value is the end-of-file object if port-eof? would
return #t.

Note: This procedure ignores MIME headers. Some delimited Base 64 formats have
headers on the line after BEGIN, followed by an empty line.

Note: This procedure ignores the Radix-64 checksum. The Radix-64 format (RFC
4880) is based on Base 64, but appends a CRC-24 (prefixed by #\=) at the end of the
data.

The rationale for ignoring headers and checksums is that it follows the Principle of
Robustness: “Be conservative in what you send; be liberal in what you accept from
others.” Lines before the BEGIN line are also ignored, because some applications
(like OpenSSL) like to prepend a human readable version of the data.

You should probably use special parsers if you are reading data with headers or
checksums. For some applications, e.g. MIME, you would also set strict? to #f.

(get-delimited-base64

(open-string-input-port

"-----BEGIN EXAMPLE-----\n\

AAECAwQFBg==\n\

-----END EXAMPLE-----\n"))

⇒ "EXAMPLE"

⇒ #vu8(0 1 2 3 4 5 6)

[Constant]base64-alphabet
The alphabet used by the standard Base 64 encoding. The alphabet is #\A–#\Z,
#\a–#\z, #\0–#\9, #\+, #\/.

[Constant]base64url-alphabet
The alphabet used by the base64url encoding. The alphabet is #\A–#\Z, #\a–#\z,
#\0–#\9, #\-, #_.

Version history:

• Industria 1.5 – The decoder was optimized and the strict? argument was introduced.

2.5.2 Bit-string data type

The (industria bit-strings) library provides a data type for representing strings of bits.

[Procedure]make-bit-string length bytevector
Returns a new bit-string of length bits, which are aligned to the start of the bytevector
(with zero padding bits at the end).

[Procedure]bit-string-unused bit-string
Return the number of unused bits at the end of the bytevector representation of
bit-string.

[Procedure]bit-string->integer bit-string
Return the integer representation of bit-string (a non-negative exact integer).

Chapter 2: Library reference 50

[Procedure]bit-string-bit-set? bit-string idx
True if bit idx of bit-string is set.

[Procedure]bytevector->bit-string bytevector length
Same as make-bit-string.

[Procedure]integer->bit-string int length
Return a new bit-string of length bits which represents the integer int.

[Procedure]bit-string=? bit-string0 bit-string1
True if bit-string0 equals bit-string1 (same length and bit values) and false otherwise.

2.5.3 Bytevector utilities

The (industria bytevectors) library contains utilities for working with R6RS bytevec-
tors.

[Procedure]bytevector-append [bytevector ...]
Appends the given bytevectors.

[Procedure]bytevector-concatenate list
list is a list of bytevectors. The bytevectors are appended.

[Procedure]subbytevector bytevector start [end]
Analogous to substring. Returns a new bytevector containing the bytes of bytevector
from index start to end (exclusive).

[Procedure]bytevector-for-each proc bytevector
Apply proc to each byte in bytevector, in left-to-right order.

[Procedure]bytevector-u8-index bytevector byte [start end]
Searches bytevector for byte, from left to right. The optional arguments start and
end give the range to search. By default the whole bytevector is searched. Returns
#f is no match is found.

[Procedure]bytevector-u8-index-right bytevector byte [start end]
Analogous to bytevector-u8-index-right, except this procedure searches right-to-
left.

[Procedure]bytevector->uint bytevector [endian]
bytevector is interpreted as an unsigned integer in (by default) big endian byte order
and is converted to an integer. The empty bytevector is treated as zero.

[Procedure]bytevector->sint bytevector [endian]
bytevector is interpreted as a signed integer in (by default) big endian byte order and
is converted to an integer. The empty bytevector is treated as zero.

[Procedure]uint->bytevector integer [endian length]
integer is converted to an unsigned integer in (by default) big endian byte order. The
returned bytevector has the minimum possible length, unless length is specified. Zero
is converted to the empty bytevector.

(import (industria bytevectors))

Chapter 2: Library reference 51

(uint->bytevector 256)

⇒ #vu8(1 0)

(uint->bytevector 255)

⇒ #vu8(255)

[Procedure]sint->bytevector integer [endian length]
integer is converted to an signed integer in (by default) big endian byte order. The re-
turned bytevector has the minimum possible length, unless length is specified (it needs
one more bit than uint->bytevector). Zero is converted to the empty bytevector.

[Procedure]bytevector=?/constant-time bytevector1 bytevector2
True if bytevector1 and bytevector2 are of equal length and have the same contents.

This is a drop-in replacement for bytevector=? that does not leak information about
the outcome of the comparison by how much time the comparison takes to perform. It
works by accumulating the differences between the bytevectors. This kind of operation
is most often needed when comparing fixed-length message digests, so the length
comparison is done in the obvious (fast) way.

2.5.4 Password hashing

The procedure provided by (industria crypto password) is the same type of procedure
that is called crypt in the standard C library. It is used for password hashing, i.e. it
scrambles passwords. This is a method often used when passwords need to be stored in
databases.

The scrambling algorithms are based on cryptographic primitives but have been modi-
fied so that they take more time to compute. They also happen to be quite annoying to
implement.

Only DES and MD5 based hashes are currently supported.

[Procedure]crypt password salt
Scrambles a password using the given salt. The salt can also be a hash. The returned
hash will be prefixed by the salt.

A fresh random salt should be used when hashing a new password. The purpose of
the salt is to make it infeasible to reverse the hash using lookup tables.

To verify that a password matches a hash, you can do something like (string=? hash

(crypt password hash)).

(import (industria crypto password))

(crypt "test" "..")

⇒ "..9sjyf8zL76k"

(crypt "test" "1RQ3YWMJd$")

⇒ "1RQ3YWMJd$oIomUD5DCxenAs2icezcn."

(string=? "1ggKHY.Dz$fNBcmNFTa1BFGXoLsRDkS."

(crypt "test" "1ggKHY.Dz$fNBcmNFTa1BFGXoLsRDkS."))

⇒ #t

Chapter 2: Library reference 52

2.5.5 Basic TCP client connections

The (industria tcp) provides a simple TCP client. This library needs implementation-
specific code, so the author is not eager to provide more than the bare minimum.

This library should work with Ikarus Scheme, GNU Guile, Larceny (not tested with
Petit Larceny and Common Larceny), Mosh Scheme, Petite Chez Scheme (as long as the
nc command is installed), Vicare Scheme, and Ypsilon Scheme. Once upon a time it also
worked with PLT Scheme, but it has not been tested with Racket.

Some newer alternatives to this library are SRFI-106 and https: / / github . com /

ktakashi/r6rs-usocket.

[Procedure]tcp-connect hostname portname
Initiates a TCP connection to the given hostname and portname (both of which are
strings).

Returns an input-port and an output-port. They are not guaranteed to be distinct.

https://github.com/ktakashi/r6rs-usocket
https://github.com/ktakashi/r6rs-usocket

53

3 Demo programs

The programs directory contains small demonstration of the libraries. These scripts are
implemented in the way recommended by R6RS non-normative appendix D.

If you’re packaging these libraries then I would recommend against installing the demos
in the default program search path.

3.1 checksig – verifies OpenPGP signature files

This program takes a detached ascii armored OpenPGP signature, a file to check against,
and a GPG keyring. It then verifies the signature. As a curiosity it also prints OpenSSH-
style random art for the key that made the signature.

3.2 honingsburk – simple Secure Shell honey pot

This demonstrates the server part of the SSH library. It starts up a dummy SSH server
that accepts logins with the username root and the password toor. The server does not
create a real PTY and the client does not gain access to the computer running the server.
It presents a command line where all commands return an error. It uses a few non-standard
procedures from Ikarus.

3.3 secsh-client – manually operated Secure Shell client

Most SSH clients try to provide a nice user experience. This one is instead a command-line
based manually operated client. After establishing the initial connection you can use a few
simplistic commands to login, establish a session channel, read and write channel data. You
can also enable debugging if you’d like to see a packet trace. This session log shows how to
connect to a honingsburk running on TCP port 2222:

Industria SSH demo client.

Connecting to localhost port 2222...

Running key exchange...

a6:4b:7e:05:38:03:01:29:07:0c:58:a4:fe:c1:d8:02

+---[ECDSA 521]---+

|*++o.. |

|ooo . |

|Eo . . |

|o + + . |

| + + oS. |

| o . o . |

| . o . |

| o .. |

| o. |

+-----------------+

localhost ecdsa-sha2-nistp521 AAAAE2VjZHNhLXNoYTItbmlzdHA1[...]

Please verify the above key.

54

SSH session established.

Type help for a list of commands.

localhost=> u "root"

Your request to use ssh-userauth was accepted.

You may try these authentication methods: (password)

localhost=> p "toor"

You’ve succesfully authenticated.

You now have access to the SSH connection protocol.

localhost=> s

New session opened.

Receive side parameters:

ID: 0 window size: 4096 maximum packet size: 32768

Send side parameters:

ID: 0 window size: 32768 maximum packet size: 32768

localhost=> t 0

localhost=> r

Linux darkstar 2.6.35.8 #1 Sat Oct 30 10:43:19 CEST 2010 i686

Welcome to your new account!

No mail.

localhost=> r

darkstar:~#

localhost=>

55

Index

–
->elliptic-point . 13

3
3DES . 8

A
aes-cbc-decrypt! . 3
aes-cbc-encrypt! . 3
aes-ctr! . 3
aes-decrypt! . 3
aes-encrypt! . 2
aes-gcm-decrypt!? . 5
aes-gcm-encrypt! . 4
arcfour! . 5
arcfour-discard! . 5
ASCII Armor . 48

B
base64-alphabet . 49
base64-decode . 48
base64-encode . 48
base64url-alphabet . 49
bit-string->integer . 49
bit-string-bit-set? . 50
bit-string-unused . 49
bit-string=? . 50
blowfish-cbc-decrypt! . 6
blowfish-cbc-encrypt! . 6
blowfish-decrypt! . 6
blowfish-encrypt! . 6
build-kexinit-packet . 28
bytevector->bit-string . 50
bytevector->elliptic-point 13
bytevector->sint . 50
bytevector->terminal-modes 37
bytevector->uint . 50
bytevector-append . 50
bytevector-concatenate . 50
bytevector-for-each . 50
bytevector-randomize! . 16
bytevector-u8-index . 50
bytevector-u8-index-right 50
bytevector=?/constant-time 51

C
chacha20-block! . 6
chacha20-encrypt . 7
chacha20-encrypt! . 7
chacha20-keystream . 6
channel-close? . 34
channel-data-value . 34
channel-data? . 34
channel-eof? . 34
channel-extended-data-type 34
channel-extended-data-value 34
channel-extended-data? . 34
channel-failure? . 35
channel-open-confirmation-

initial-window-size . 33
channel-open-confirmation-

maximum-packet-size . 33
channel-open-confirmation-sender 33
channel-open-confirmation? 33
channel-open-failure-description 33
channel-open-failure-language 33
channel-open-failure-reason-code 33
channel-open-failure? . 33
channel-open-initial-window-size 31
channel-open-maximum-packet-size 31
channel-open-sender . 31
channel-open-type . 31
channel-open/direct-tcpip-

connect-address . 31
channel-open/direct-tcpip-connect-port 31
channel-open/direct-tcpip-

originator-address . 31
channel-open/direct-tcpip-

originator-port . 31
channel-open/direct-tcpip? 31
channel-open/forwarded-tcpip-

connected-address . 32
channel-open/forwarded-tcpip-

connected-port . 32
channel-open/forwarded-tcpip-

originator-address . 32
channel-open/forwarded-tcpip-

originator-port . 32
channel-open/forwarded-tcpip? 32
channel-open/session? . 32
channel-open/x11-originator-address 32
channel-open/x11-originator-port 32
channel-open/x11? . 32
channel-open? . 31
channel-packet-recipient . 32
channel-packet? . 32
channel-request-type . 35
channel-request-want-reply? 35
channel-request/break-length 35

Index 56

channel-request/break? . 35
channel-request/env-name . 35
channel-request/env-value 35
channel-request/env? . 35
channel-request/exec-command 35
channel-request/exec? . 35
channel-request/exit-

signal-core-dumped? . 36
channel-request/exit-signal-language 36
channel-request/exit-signal-message 36
channel-request/exit-signal-name 36
channel-request/exit-signal? 36
channel-request/exit-status-value 36
channel-request/exit-status? 36
channel-request/pty-req-columns 37
channel-request/pty-req-height 37
channel-request/pty-req-modes 37
channel-request/pty-req-rows 37
channel-request/pty-req-term 36
channel-request/pty-req-width 37
channel-request/pty-req? . 36
channel-request/shell? . 37
channel-request/signal-name 37
channel-request/signal? . 37
channel-request/subsystem-name 38
channel-request/subsystem? 38
channel-request/window-change-columns 38
channel-request/window-change-height 38
channel-request/window-change-rows 38
channel-request/window-change-width 38
channel-request/window-change? 38
channel-request/x11-req-cookie 38
channel-request/x11-req-protocol 38
channel-request/x11-req-screen 39
channel-request/x11-req-

single-connection? . 38
channel-request/x11-req? . 38
channel-request/xon-xoff-client-can-do? . . . 39
channel-request/xon-xoff? 39
channel-request? . 35
channel-success? . 34
channel-window-adjust-amount 34
channel-window-adjust? . 33
clear-aes-schedule! . 3
clear-arcfour-keystream! . 5
clear-blowfish-schedule! . 6
close-ssh . 28
crypt . 51

D
debug-always-display? . 40
debug-language . 41
debug-message . 41
debug? . 40
deregister-userauth . 43
des! . 9
des-crypt . 10

des-key-bad-parity? . 8
development snapshots . 1
Diffie-Hellman . 10
disconnect-code . 39
disconnect-language . 40
disconnect-message . 40
disconnect? . 39
dsa-create-signature . 12
dsa-private->public . 11
dsa-private-key-from-bytevector 11
dsa-private-key-from-pem-file 11
dsa-private-key? . 11
dsa-public-key-length . 11
dsa-public-key? . 11
dsa-signature-from-bytevector 12
dsa-verify-signature . 12

E
ec* . 13
ec+ . 13
ec- . 13
ecdh-curve25519 . 7
ecdh-curve448 . 7
ecdsa-create-signature . 15
ecdsa-private->public . 14
ecdsa-private-key-d . 14
ecdsa-private-key-from-bytevector 14
ecdsa-private-key-Q . 14
ecdsa-private-key? . 14
ecdsa-public-key-curve . 14
ecdsa-public-key-length . 14
ecdsa-public-key-Q . 14
ecdsa-public-key? . 14
ecdsa-sha-2-create-signature 15
ecdsa-sha-2-private-key-from-bytevector . . . 15
ecdsa-sha-2-private-key? . 15
ecdsa-sha-2-public-key? . 15
ecdsa-sha-2-verify-signature 15
ecdsa-signature-from-bytevector 15
ecdsa-signature-to-bytevector 15
ecdsa-verify-signature . 14
ed25519-private->public . 8
ed25519-private-key-secret 8
ed25519-private-key? . 8
ed25519-public-key-value . 8
ed25519-public-key=? . 8
ed25519-public-key? . 8
ed25519-sign . 8
ed25519-verify . 8
eddsa-private-key-from-bytevector 8
Elliptic Curve Diffie-Hellman . 7
elliptic-curve-a . 12
elliptic-curve-b . 13
elliptic-curve-G . 13
elliptic-curve-h . 13
elliptic-curve-n . 13
elliptic-curve=? . 13

Index 57

elliptic-point->bytevector 13
elliptic-prime-curve-p . 13
elliptic-prime-curve? . 12
entropy . 2
expand-aes-key . 2
expand-arcfour-key . 5
expand-blowfish-key . 6
expt-mod . 10

F
flush-ssh-output . 28

G
get-delimited-base64 . 49
get-openpgp-detached-signature/ascii 20
get-openpgp-keyring . 19
get-openpgp-keyring/keyid 20
get-openpgp-packet . 19
get-ssh . 28
get-ssh-private-keys . 46
get-ssh-public-key . 47
global-request-type . 29
global-request-want-reply? 29
global-request/cancel-tcpip-

forward-address . 30
global-request/cancel-

tcpip-forward-port . 30
global-request/cancel-tcpip-forward? 30
global-request/tcpip-forward-address 30
global-request/tcpip-forward-port 30
global-request/tcpip-forward? 30
global-request? . 29

H
Hello World, example . 1

I
identification-comments . 25
identification-protocol-version 25
identification-software-version 25
ignore? . 40
integer->bit-string . 50
integer->elliptic-point . 13

K
kexinit-compression-algorithms-

client-to-server . 42
kexinit-compression-algorithms-

server-to-client . 42
kexinit-cookie . 41
kexinit-encryption-algorithms-

client-to-server . 41
kexinit-encryption-algorithms-

server-to-client . 42
kexinit-first-kex-packet-follows? 42
kexinit-kex-algorithms . 41
kexinit-languages-client-to-server 42
kexinit-languages-server-to-client 42
kexinit-mac-algorithms-client-to-server . . . 42
kexinit-mac-algorithms-server-to-client . . . 42
kexinit-reserved . 42
kexinit-server-host-key-algorithms 41
kexinit? . 41
key-exchange-packet? . 28

M
make-aes-gcm-state . 3
make-bit-string . 49
make-channel-close . 34
make-channel-data . 34
make-channel-eof . 34
make-channel-extended-data 34
make-channel-failure . 35
make-channel-open-confirmation 33
make-channel-open-failure 33
make-channel-open/direct-tcpip 31
make-channel-open/forwarded-tcpip 32
make-channel-open/session 32
make-channel-open/x11 . 32
make-channel-request/break 35
make-channel-request/env . 35
make-channel-request/exec 35
make-channel-request/exit-signal 36
make-channel-request/exit-status 36
make-channel-request/pty-req 36
make-channel-request/shell 37
make-channel-request/signal 37
make-channel-request/subsystem 38
make-channel-request/window-change 38
make-channel-request/x11-req 38
make-channel-request/xon-xoff 39
make-channel-success . 34
make-channel-window-adjust 33
make-debug . 40
make-dh-secret . 10
make-disconnect . 39
make-dsa-private-key . 11
make-dsa-public-key . 11
make-ecdh-curve25519-secret 7
make-ecdh-curve448-secret . 7
make-ecdsa-private-key . 14

Index 58

make-ecdsa-public-key . 14
make-ecdsa-sha-2-private-key 15
make-ecdsa-sha-2-public-key 15
make-ed25519-private-key . 8
make-ed25519-public-key . 8
make-elliptic-prime-curve 12
make-global-request . 29
make-global-request/cancel-

tcpip-forward . 30
make-global-request/tcpip-forward 30
make-ignore . 40
make-kexinit . 41
make-newkeys . 42
make-otr-state . 21
make-random-bytevector . 16
make-request-failure . 31
make-request-success . 30
make-rsa-private-key . 16
make-rsa-public-key . 16
make-service-accept . 41
make-service-request . 41
make-ssh-client . 27
make-ssh-server . 27
make-unimplemented . 40
make-userauth-banner . 44
make-userauth-failure . 43
make-userauth-password-changereq 45
make-userauth-public-key-ok 45
make-userauth-request . 43
make-userauth-request/password 44
make-userauth-request/password-change 45
make-userauth-request/public-key 46
make-userauth-request/public-key-query 45
make-userauth-success . 44
MODP groups . 10

N
newkeys? . 42

O
openpgp-format-fingerprint 21
openpgp-public-key-fingerprint 21
openpgp-public-key-id . 21
openpgp-public-key-subkey? 21
openpgp-public-key-value . 21
openpgp-public-key? . 21
openpgp-signature-creation-time 20
openpgp-signature-expiration-time 20
openpgp-signature-hash-algorithm 20
openpgp-signature-issuer . 20
openpgp-signature-public-key-algorithm 20
openpgp-signature? . 20
openpgp-user-attribute? . 21
openpgp-user-id-value . 21
openpgp-user-id? . 20
openssh-private-key-comment 47

openssh-private-key-private 47
openssh-private-key-public 47
openssh-private-key? . 46
otr-authenticate! . 22
otr-empty-queue! . 22
otr-format-session-id . 24
otr-hash-public-key . 23
otr-message? . 21
otr-send-encrypted! . 22
otr-send-symmetric-key-request! 24
otr-state-mss . 24
otr-state-mss-set! . 24
otr-state-our-dsa-key . 23
otr-state-our-instance-tag 24
otr-state-secure-session-id 23
otr-state-symmetric-key . 24
otr-state-their-dsa-key . 23
otr-state-version . 24
otr-tag . 24
otr-update! . 22

P
permute-key . 9
port-ascii-armored? . 19
preferred-compression-

algorithms-client->server 26
preferred-compression-

algorithms-server->client 26
preferred-encryption-algorithms-

client->server . 26
preferred-encryption-algorithms-

server->client . 26
preferred-kex-algorithms . 26
preferred-languages-client->server 27
preferred-languages-server->client 27
preferred-mac-algorithms-client->server . . . 26
preferred-mac-algorithms-server->client . . . 26
preferred-server-host-key-algorithms 26
process-key-exchange-packet 29
put-delimited-base64 . 48
put-ssh . 28

R
randomness . 2
register-connection . 29
register-transport . 39
register-userauth . 43
register-userauth-password 43
register-userauth-public-key 43
request-failure? . 31
request-success-data . 31
request-success? . 30
reverse-aes-schedule . 3
reverse-blowfish-schedule . 6
rsa-decrypt . 18
rsa-decrypt/blinding . 18

Index 59

rsa-encrypt . 17
rsa-pkcs1-decrypt . 18
rsa-pkcs1-decrypt-digest . 19
rsa-pkcs1-decrypt-signature 18
rsa-pkcs1-encrypt . 18
rsa-pkcs1-encrypt-digest . 19
rsa-pkcs1-encrypt-signature 18
rsa-private->public . 17
rsa-private-key-coefficient 17
rsa-private-key-d . 17
rsa-private-key-exponent1 17
rsa-private-key-exponent2 17
rsa-private-key-from-bytevector 17
rsa-private-key-from-pem-file 17
rsa-private-key-modulus . 17
rsa-private-key-n . 17
rsa-private-key-prime1 . 17
rsa-private-key-prime2 . 17
rsa-private-key-private-exponent 17
rsa-private-key-public-exponent 17
rsa-private-key? . 17
rsa-public-key-byte-length 16
rsa-public-key-e . 16
rsa-public-key-from-bytevector 16
rsa-public-key-length . 16
rsa-public-key-modulus . 16
rsa-public-key-n . 16
rsa-public-key-public-exponent 16
rsa-public-key? . 16

S
security, warning . 2
service-accept-name . 41
service-accept? . 41
service-request-name . 41
service-request? . 41
sign-userauth-request/public-key 46
sint->bytevector . 51
Socialist Millionaires’ Protocol 22
ssh-conn-host-key . 27
ssh-conn-peer-identification 27
ssh-conn-peer-kexinit . 27
ssh-conn-registrar . 27
ssh-conn-session-id . 27
ssh-debugging . 25
ssh-debugging-port . 25
ssh-error . 28
ssh-key-exchange . 27
ssh-key-re-exchange . 28
ssh-public-key->bytevector 47
ssh-public-key-algorithm . 47
ssh-public-key-algorithm* 47
ssh-public-key-fingerprint 47
ssh-public-key-random-art 47
subbytevector . 50

T
tcp-connect . 52
tdea-cbc-decipher! . 9
tdea-cbc-encipher! . 9
tdea-decipher! . 9
tdea-encipher! . 9
tdea-permute-key . 9
terminal-modes->bytevector 37
Triple Data Encryption Algorithm 8

U
uint->bytevector . 50
unimplemented-sequence-number 40
unimplemented? . 40
userauth-banner-language . 44
userauth-banner-message . 44
userauth-banner? . 44
userauth-failure-can-continue 44
userauth-failure-partial? 44
userauth-failure? . 43
userauth-password-changereq-language 45
userauth-password-changereq-prompt 45
userauth-password-changereq? 45
userauth-public-key-ok-algorithm 46
userauth-public-key-ok-key 46
userauth-public-key-ok? . 45
userauth-request-method . 43
userauth-request-service . 43
userauth-request-username 43
userauth-request/password-change-new 45
userauth-request/password-change-old 45
userauth-request/password-change? 45
userauth-request/password-value 44
userauth-request/password? 44
userauth-request/public-key-algorithm 46
userauth-request/public-key-key 46
userauth-request/public-key-

query-algorithm . 45
userauth-request/public-key-query-key 45
userauth-request/public-key-query? 45
userauth-request/public-key? 46
userauth-request? . 43
userauth-success? . 44

V
verify-openpgp-signature . 20
VisualHostKey . 47

X
X25519 . 7
X448 . 7

	Getting started
	Installation
	Usage

	Library reference
	Cryptographic primitives
	Advanced Encryption Standard
	ARCFOUR stream cipher
	The Blowfish Cipher
	ChaCha20 stream cipher
	Elliptic Curve Diffie-Hellman key exchange
	Edwards-curve Digital Signature Algorithm (EdDSA)
	Data Encryption Standard
	Diffie-Hellman key exchange
	Digital Signature Algorithm
	Elliptic Curve Cryptography
	Elliptic Curve Digital Signature Algorithm (ECDSA)
	Entropy and randomness
	RSA public key encryption and signatures

	OpenPGP signature verification
	Off-the-Record Messaging
	Secure Shell (SSH)
	Secure Shell Connection Protocol
	Secure Shell Transport Layer Protocol
	Secure Shell Authentication Protocol
	SSH private key format conversion
	SSH public key format conversion

	Various utilities
	Base 64 encoding and decoding
	Bit-string data type
	Bytevector utilities
	Password hashing
	Basic TCP client connections

	Demo programs
	checksig -- verifies OpenPGP signature files
	honingsburk -- simple Secure Shell honey pot
	secsh-client -- manually operated Secure Shell client

	Index

